

Qualifikationsziele Bachelor Angewandte Informatik / Infotronik

Fakultät Angewandte Informatik der Technischen Hochschule Deggendorf

Verfasser: Prof. Dr.-Ing. Terezia Toth, Studiengangskoordinatorin für den Bachelorstudiengang Angewandte Informatik / Infotronik

Geschlechtsneutralität

Auf die Verwendung von Doppelformen oder anderen Kennzeichnungen weiblichen, männlichen und diversen Geschlechts wird weitgehend verzichtet, um die Lesbarkeit und Übersichtlichkeit zu wahren. Alle Bezeichnungen für die verschiedenen Gruppen von Hochschulangehörigen beziehen sich auf Angehörige aller Geschlechter der betreffenden Gruppen gleichermaßen.

Stand: 08.02.2023

Inhaltsverzeichnis

	Geschlechtsneutralität	1
1	Ziele des Studiengangs	. 3
2	Lernergebnisse des Studiengangs	3
3	Studienziele und Qualifikationsziele	. 4
4	Lernergebnisse der Module / Modulziele	5
5	Qualifikationsziele des Studienganges im dualen Modus	7

1 Ziele des Studiengangs

Der Bachelorstudiengang Angewandte Informatik / Infotronik liefert die theoretischen und praktischen Grundlagen für Forschungs- und Entwicklungsaufgaben auf dem Gebiet der angewandten Informatik. Das Studium hat das Ziel, durch praxisorientierte Lehre auf wissenschaftlicher Grundlage, Grundkenntnisse und Fertigkeiten aus den wichtigsten Teilgebieten der Informatik zu vermitteln, welche in praktischen Anwendungen erforderlich sind. Durch eine umfassende Ausbildung sollen die Studierenden in die Lage versetzt werden, die wesentlichen Zusammenhänge im Themenkomplex der angewandten Informatik zu erkennen. Absolventen des Studiengangs sind in der Lage, komplexe Projekte der angewandten Informatik selbstständig und in Teams abzuwickeln sowie agil auf rasch fortschreitende technische Entwicklungen zu reagieren. Neben Fachwissen erwerben die Studierenden über die Module zur Schlüsselqualifikation soziale und methodische Kompetenzen zur Förderung der Persönlichkeitsbildung, zur Arbeitsmethodik und Selbstorganisation sowie zur Projektplanung und -abwicklung. Das Studium kann auch im dualen Modus mit vertiefter Praxis absolviert werden. Das Studium soll für Tätigkeiten als Informatiker in den für diesen Beruf typischen Arbeitsgebieten befähigen, z.B. Entwicklung von Software und Elektronik (Konzeption, Entwurf, Implementierung und Test), Qualitätssicherung, Vertrieb und Einkauf. Es wird auf eine breitgefächerte, qualifizierte und fachübergreifende Ausbildung geachtet, welche die Absolventen befähigt, in vielfältigen Berufsbildern zu arbeiten. Berufsmöglichkeiten bieten sich nicht nur in Wirtschafts- und Versorgungsunternehmen, sondern auch in den Verwaltungen des öffentlichen Dienstes sowie in der freien Praxis.

2 Lernergebnisse des Studiengangs

Das Studienprogramm soll die Absolventen dazu befähigen, typische Aufgaben eines Informatikers in der Industrie in den Bereichen Forschung und Entwicklung sowie Projektdurchführung zu übernehmen. Ebenso ist die Beschäftigung im öffentlichen Dienst, der Verwaltung, eine Tätigkeit als Berater bzw. unabhängiger Gutachter sowie der Weg in die Selbstständigkeit möglich. Das Programm, das insgesamt einen Umfang von 210 ECTS-Punkten besitzt, besteht aus sechs theoretischen Semestern (180 ECTS-Punkte) sowie einem Praxissemester (30 ECTS-Punkte) in Form eines Industriepraktikums. In den Theoriesemestern werden die mathematischnaturwissenschaftlichen Grundlagen in den Modulen Mathematik, Grundlagen der Physik und Digitaltechnik sowie informatische Grundlagen u.a. in den Modulen Grundlagen der Informatik, Programmierung 1, Programmierung 2: Objektorientierte

Programmierung, Algorithmen und Datenstrukturen, Netzwerktechnik und IT-Netze, Betriebssysteme und Datenbanken vermittelt. Kreditpunkte werden darüber hinaus in interdisziplinären Schlüsselqualifikationsmodulen (wie Medienkompetenz und Selbstorganisation, Betriebswirtschaft, Technikethik und Nachhaltigkeit, Wissenschaftliches Arbeiten, Rhetorik und Englisch für Ingenieure) erworben. In den drei Schwerpunkten "Eingebettete Systeme", "Mobile und Räumliche Systeme" und "Internet of Things" können sich die Studierenden weiter spezialisieren.

3 Studienziele und Qualifikationsziele

Die folgende Tabelle 1 ordnet den genannten Studienzielen im Bachelorstudiengang Angewandte Informatik / Infotronik Lernergebnisse zu.

Tabelle 1: Lernergebnisse im Bachelorstudiengang Angewandte Informatik /						
Infotronik						
1. Naturwissen-	Kenntnisse: Die Studierenden kennen grundlegende					
schaftlich-technische	mathematische Begriffe und Methoden, physikalische					
Grundlagen	Grundlagen und elektrotechnische Grundlagen.					
	Fertigkeiten: Die Studierenden verstehen die Verfahren und					
	können sie nachvollziehen. Sie können sich in weitergehende					
	Methoden einarbeiten.					
	Kompetenzen: Die Studierenden setzen die ingenieurswissen-					
	schaftlichen Kenntnisse und Fertigkeiten zur Lösung					
	informatischer Problemstellungen ein.					
2. Grundlagen:	Kenntnisse: Die Studierenden kennen grundlegende					
Informatische und	informatische und speziell für eingebettete Systeme wichtige					
ingenieurswissen-	elektrotechnische Begriffe und Methoden					
schaftliche Methodik	Fertigkeiten: Auf Basis der Kenntnisse und Methoden können die					
und ingenieurmäßiges	Studierenden professionell Probleme analysieren und angepasste					
Entwickeln, Fachspe-	Lösungen entwickeln.					
zifische Grundlagen	Kompetenzen: Die wesentlichen Methoden der					
	Elektronikentwicklung können angewendet werden.					
3. Eingebettete Systeme	Kenntnisse: Die allgemeinen Grundlagen werden in den					
	Bereichen Eingebettete Systeme spezialisiert.					
	Fertigkeiten: Technische Problemstellungen im Bereich					
	Eingebetteter Systeme können analysiert und bewertet werden.					

		Technische Verfahren Eingebetteter Systeme können bei neuen
		Problemstellungen angewandt werden.
		Kompetenzen: Technische Problemstellungen zur Entwicklung
		Eingebetteter Systeme können analysiert werden.
4.	Mobile und räumliche	Kenntnisse: Die allgemeinen Grundlagen werden in den
	Systeme	Bereichen Mobile und räumliche Systeme spezialisiert.
	Systeme	Fertigkeiten: Technische Problemstellungen im Bereich Mobile
		und räumliche Systeme können analysiert und bewertet werden.
		Technische Verfahren für Mobile und räumliche Systeme können
		bei neuen Problemstellungen angewandt werden.
		Kompetenzen: Technische Problemstellungen zur Entwicklung
		Mobiler und räumlicher Systeme können analysiert werden.
5.	Internet of Things	Kenntnisse: Die allgemeinen Grundlagen werden im Bereich
		Internet of Things spezialisiert.
		Fertigkeiten: Technische Problemstellungen im Bereich Internet
		of Things können analysiert und bewertet werden. Technische
		Verfahren des Internet of Things können bei neuen
		Problemstellungen angewandt werden.
		Kompetenzen: Technische Problemstellungen im Bereich
		Internet of Things können analysiert werden.
6.	Überfachliche	Kenntnisse: Aktuelle Trends und Strömungen in der
	Kompetenz	Informationsgesellschaft werden erkannt. Die Notwendigkeit des
		selbstständigen lebenslangen Lernens wird erkannt
		Fertigkeiten: Studierende sind in der Lage, sich ein eigenes
		Meinungsbildes zu einem Thema zu schaffen und dieses
		verständlich zu präsentieren.
		Kompetenzen: Einflussnahme auf die Entwicklung neuer
		technischer Produkte durch innovativen Einsatz. Bearbeitung
		von technischen Aufgabenstellungen im Team.
		I

4 Lernergebnisse der Module / Modulziele

Die einzelnen Module, ihre Detailziele und die von den Absolventen zu erwerbenden Kompetenzen sind in dem Modulhandbuch für den Bachelorstudiengang Angewandte Informatik / Infotronik beschrieben und auf der Webseite des Studiengangs veröffentlicht. Dort sind die Module in der Reihenfolge der Modulnummer der jeweiligen

Studien- und Prüfungsordnung (StPrO) aufgelistet. Mit jedem Modul sollen die Studierenden ihr Kompetenzniveau erweitern. In der folgenden Tabelle wird der Zusammenhang zwischen den einzelnen Modulen und den im vorherigen Abschnitt beschriebenen Zielen im Bachelorstudiengang hergestellt.

Tabelle 2: Ziele der Module im Bachelorstudiengang Angewandte Informatik / Infotronik						
1. Studienziel: Naturwissenschaftlich-technische Grundlagen						
Modul	Kenntnisse	Fähigkeiten	Kompetenzen			
Mathematik	XX	xx	X			
Grundlagen der Physik und Digitaltechnik	XX	xx	х			
2. Studienziel: Grundlagen: In Methodik und ingenieurmäßiges						
Modul	Kenntnisse	Fähigkeiten	Kompetenzen			
Grundlagen der Elektronik	XX	xx	X			
Grundlagen der Informatik	XX	XX	XX			
Programmierung 1	XX	xx	X			
Grundlagen der Messtechnik und Sensorik	XX	XX	XX			
Programmierung 2: Objektorientierte Programmierung	XX	xx	xx			
Algorithmen & Datenstrukturen	XX	xx	XX			
Software-Engineering	XX	xx	Х			
Datenbanken	XX	xx	Х			
Betriebssysteme	XX	XX	Х			
Netzwerktechnik und IT-Systeme	XX	XX	X			
Projektmanagement	X	XX	XX			
3. Studienziel: Eingebettete Syst	teme					
Modul	Kenntnisse	Fähigkeiten	Kompetenzen			
Digitaltechnik	XX	xx	Х			
Mikrocontroller und Sensorik	XX	xx	X			
Bauelemente und Schaltungen	XX	xx	X			
Industrielle und Automotive Bussysteme	XX	XX	Х			
Hardware-Modellierung	XX	xx	XX			
Prozessinformatik	XX	XX	х			
Systemprogrammierung	XX	xx	XX			
Digitale Signalverarbeitung	XX	XX	XX			
Echtzeitsysteme	XX	xx	xx			
Modellbildung & Simulation	XX	XX	X			
4. Studienziel: Mobile und räuml	iche Systeme					
Modul	Kenntnisse	Fähigkeiten	Kompetenzen			
Räumliche Bezugssysteme und Kartographie	XX	Х	Х			

Grundlagen Geoinformatik und Geoinformationssysteme (GIS)	xx	xx	xx
Fernerkundung und Photogrammmetrie	xx	xx	X
Raster- und Vektordatenverarbeitung	х	xx	xx
Webprogrammierung 1	xx	xx	x
Mathematik für räumliche Systeme	xx	х	X
UAS und Darstellung räumlicher Daten	Х	xx	xx
Geodatenprozessierung und Automatisierung	х	xx	xx
Webprogrammierung 2	XX	XX	X
Erweiterte Informatik	xx	х	X
Räumliche Modellierung und algorithmische Geometrie	xx	х	xx
5. Studienziel: Internet of Thing	ıs		
Modul	Kenntnisse	Fähigkeiten	Kompetenzen
		Fähigkeiten xx	Kompetenzen xx
Modul Usability-Interaktion und User	Kenntnisse		<u>-</u>
Modul Usability-Interaktion und User Interface Design	Kenntnisse xx	xx	xx
Modul Usability-Interaktion und User Interface Design Mikrocontroller und Sensorik	Kenntnisse xx xx	xx	xx
Modul Usability-Interaktion und User Interface Design Mikrocontroller und Sensorik Spezielle Protokolle des IOT	XX XX XX	xx xx xx	x x xx
Modul Usability-Interaktion und User Interface Design Mikrocontroller und Sensorik Spezielle Protokolle des IOT Webprogrammierung 1	XX XX XX XX XX	xx xx xx xx	xx x xx x
Usability-Interaktion und User Interface Design Mikrocontroller und Sensorik Spezielle Protokolle des IOT Webprogrammierung 1 Betriebswirtschaft für Gründer	XX XX XX XX XX	xx xx xx xx xx	xx x xx x x
Usability-Interaktion und User Interface Design Mikrocontroller und Sensorik Spezielle Protokolle des IOT Webprogrammierung 1 Betriebswirtschaft für Gründer BWL-Gründerprojekt	XX XX XX XX XX XX XX	xx xx xx xx xx xx	xx xx xx xx xx
Usability-Interaktion und User Interface Design Mikrocontroller und Sensorik Spezielle Protokolle des IOT Webprogrammierung 1 Betriebswirtschaft für Gründer BWL-Gründerprojekt Software-Projekt	XX XX XX XX XX XX XX XX XX XX	xx xx xx xx xx xx	xx xx xx xx xx xx
Usability-Interaktion und User Interface Design Mikrocontroller und Sensorik Spezielle Protokolle des IOT Webprogrammierung 1 Betriebswirtschaft für Gründer BWL-Gründerprojekt Software-Projekt Webprogrammierung 2	XX XX XX XX XX XX XX XX XX XX	XX XX XX XX XX XX XX XX XX	XX X XX X XX XX XX XX XX
Usability-Interaktion und User Interface Design Mikrocontroller und Sensorik Spezielle Protokolle des IOT Webprogrammierung 1 Betriebswirtschaft für Gründer BWL-Gründerprojekt Software-Projekt Webprogrammierung 2 Künstliche Intelligenz	XX XX XX XX XX XX XX XX XX XX	xx	XX XX XX XX XX XX XX XX XX
Usability-Interaktion und User Interface Design Mikrocontroller und Sensorik Spezielle Protokolle des IOT Webprogrammierung 1 Betriebswirtschaft für Gründer BWL-Gründerprojekt Software-Projekt Webprogrammierung 2 Künstliche Intelligenz Sicherheit Interaktiver Systeme	XX XX XX XX XX XX XX XX XX XX	xx	XX XX XX XX XX XX XX XX XX
Usability-Interaktion und User Interface Design Mikrocontroller und Sensorik Spezielle Protokolle des IOT Webprogrammierung 1 Betriebswirtschaft für Gründer BWL-Gründerprojekt Software-Projekt Webprogrammierung 2 Künstliche Intelligenz Sicherheit Interaktiver Systeme 6. Studienziel: Überfachliche Ko	XX XX XX XX XX XX XX XX XX XX	xx	XX

Legende: xx starker Bezug; x mittlerer Bezug

5 Qualifikationsziele des Studienganges im dualen Modus

Neben den für den Studiengang relevanten Bereichen der Fach-, Methoden- und Selbstkompetenz erwerben dual Studierende durch die Theorie-Praxis-Verknüpfung zusätzliche Transferkompetenzen um Gelerntes erfolgreich in die Praxis übertragen zu können. So können dual Studierende mit Transferkompetenz ihr fachliches Wissen in

beruflichen Situationen besser anwenden und Erfahrungen aus der beruflichen Praxis nutzen, wenn sie ihr fachliches Wissen erweitern sollen.