

Modulhandbuch Bachelor Wirtschaftsingenieurwesen

Fakultät Angewandte Naturwissenschaften und Wirtschaftsingenieurwesen

Prüfungsordnung 04.10.2018

Stand: Montag, 31.01.2022 09:24

INHALTSVERZEICHNIS

W-01 Mathematische Grundlagen	4
W-02 Grundlagen der Ingenieurmathematik	11
W-03 Informatik	19
W-04 Technische Mechanik	25
W-05 Marketing	29
W-06 Unternehmerische Grundlagen	34
W-07 Wirtschaftsrecht	45
W-08 Physik 1	56
W-09 Physik 2	62
W-10 Wirtschaftsenglisch	69
W-11 Technisches Englisch	
W-12 Konstruktion	80
W-13 Werkstofftechnik	83
W-14 Grundlagen der Elektrotechnik	86
W-15 Meß- und Regelungstechnik	90
W-16 Fluid- und Energietechnik	93
W-17 Regenerative Energien und Stofftechnik	96
W-18 Investition und Finanzierung	102
W-19 Allgemeinwissenschaftliches Wahlpflichtfach	107
W-20 Fachwissenschaftliches Wahlpflichtfach	110
W-21 Innovationsmanagement	122
W-22 Unternehmensnachfolge und Business Simulation	126
W-23 Betriebliche Qualität und Statistik	130
W-24 Operations Research	138
W-25 Kunststoff- und Fertigungstechnik	144
W-26 Betriebliche Informationssysteme	150
W-27 Personalführung und Arbeitsrecht	154

W-28 Praxismodul	158
W-29 Industriepraktikum	163
W-30 Unternehmensführung	166
W-31 Produktion und Logistik	179
W-32 Betriebliche Organisation, Einkauf und Vertrieb	183
W-33 Optimierung und Simulation	187
W-34 Produktion und Logistik	191
W-35 Data Science	195
W-36 Bachelormodul	199

○W-01 MATHEMATISCHE GRUNDLAGEN

Modul Nr.	W-01
Modulverantwortliche/r	Prof. Dr. Michael Moritz
Kursnummer und Kursname	WZF Mathematische Grundlagen
	W1101 Mathematische Grundlagen
Lehrende	Prof. Dr. Michael Moritz
	Prof. Dr. Thomas Stirner
Semester	1
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	Jährlich
Art der Lehrveranstaltungen	Pflichtfach, Wahlfach
Niveau	Undergraduate
SWS	4 SWS für Vorlesung (zusätzl. 2 SWS für WZF)
ECTS	5
Workload	Präsenzzeit: 60 Stunden (zusätzl. 30 Stunden für WZF)
	Selbststudium: 30 Stunden
	Virtueller Anteil: 60 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Nach Abschluss des Moduls sind die Studierenden in der Lage

 die für diese Veranstaltung typischen Aufgaben systematisch und schrittweise strukturiert zu lösen und sowohl den Weg, als auch die Ergebnisse übersichtlich und nachvollziehbar zu dokumentieren,

- sich quantitative oder geometrische Zusammenhänge zu veranschaulichen und das zur Lösung bzw. zur Dokumentation zu nutzen,
- Voraussetzungen und Ergebnisse auf Plausibilität zu pr
 üfen bzw. Proberechnungen durchzuf
 ühren,
- o die einschlägigen Hilfsmittel fachgerecht zu benutzen,
- o schriftlich und mündlich über einschlägige Themen zu kommunizieren,
- die Rechenregeln für die Grundrechenarten, Potenzen, Wurzeln, Exponentialfunktion und Logarithmen richtig und zielführend einzusetzen,
- die Lösungsmengen von einfachen Gleichungen, Ungleichungen und Iin. Gleichungssystemen zu bestimmen,
- algebraische Rechnungen mit Komplexen Zahlen in den üblichen Darstellungen selbständig durchzuführen,
- Lösungswege mit algebraischen Rechnungen mit Vektoren (unter Einschluss von Skalar- und Kreuzprodukt) auch in einfachen Anwendungsfällen selbständig zu finden, ggf. geometrisch zu interpretieren und durchzurechnen,
- Rechnungen und einfache Anwendungen unter Zuhilfenahme von Matrizen und Determinanten zu bewältigen und deren Rechenregeln zu beherrschen,
- o die Partialbruch-Zerlegung selbständig zu beherrschen,
- basierend auf den Kenntnissen der Eigenschaften, Rechenmethoden und Graphen mit einfachen Funktionen (Polynome, Gebr.-rat. Funktionen, ExponentialFunktion, Sinus, Cosinus, Tangens und deren Umkehrfunktionen) zu arbeiten,
- Konvergenzverhalten und ggf. Grenzwerte von Zahlenfolgen selbständig zu untersuchen.

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbar ist das Erlernte in allen Studiengängen, in denen Mathematik vorkommt; vorzugsweise in Ingenieursstudiengängen.

Verwendbarkeit ist nicht gleich Anrechenbarkeit!

Zugangs- bzw. empfohlene Voraussetzungen

Schulkenntnisse der Mathematik, wobei hier oft auch Themen aus der Mittelstufe im Vordergrund stehen.

Zur Selbsteinschätzung suchen Sie bitte im Netz unter Schlagworten wie "Selbsttest Mathematik" oder "Mindestanforderung Mathematik"

Mathematik lernt man nur durch das (schriftliche) Nachvollziehen von Beispielen und Lösen von Aufgaben!

Zur Auffrischung gibt es mittlerweile eine ganze Anzahl an Vor- und Brückenkursen, als Buch, Online, App, ...

https://www.ombplus.de

Crashkurse werden vor Beginn des Wintersemesters z.B. vom Career-Service der THD angeboten.

Exemplarische Literatur:

- H. Kreul, H. Ziebarth: Mathematik leicht gemacht, Europa-Lehrmittel, ISBN-10: 9783808556092 / ISBN-13: 978-3808556092
- G. Merziger, M. Holz, D. Wille: Repetitorium Elementare Mathematik, Bd. 1 und
 Binomi-Verlag, ISBN-10: 3923923376 / ISBN-13: 978-3923923373
 ISBN-10: 3923923384 / ISBN-13: 978-3923923380

Textbooks in Englisch:

https://openstax.org/details/books/algebra-and-trigonometry

https://openstax.org/details/books/precalculus

Inhalt

- o Mengen und Abbildungen, Zahlen, Zahlbereiche N, Z, Q, R und Rechenregeln
- Vektoren

Verschiebungen. Vektoralgebra, geom. Interpretation.

Linearkombination, lin. Unabhängigkeit.

Skalarprodukt, Projektion, Kreuzprodukt.

Kanonische Basis, Rechenregeln für Vektoren in Koordinatendarstellung, Richtungscosini, Zerlegen eines Vektors in vorgegebene Richtungen, Basis-Wechsel.

Matrizen und Matrizen-Produkt

o Komplexe Zahlen

Definition, Gleichheit und Grundrechenarten in cart. Form, Zahlen-Ebene, konjugiert Komplexe, Trigonometrische Form, Umrechnen und Hauptwert, Grundrechenarten in Trig. Form, Satz von Moivre, Euler-Formel, Exponential-Form

Algebraische Gleichungen, Fundamentalsatz der Algebra, Kreisteilungsgleichung,

Überlagerung von gleichfrequenten, reellen Schwingungen im Komplexen

o Lin. Gleichungs-Systeme

2x2-Systeme mit geom. Interpretation

Allg. Fall, Matrix-Schreibweise, Interpretation als Linear-Kombination, Lösungen

Gauss-Algorithmus

Spezielle Matrizen, Rechenregeln für Matrizen, Inverse mit Gauss-Jordan-Verfahren

Info: Pseudo-Inverse und überbestimmte Systeme, Anfitten an Messdaten Rang, Invertierbarkeit, Lösungstheorie lin. Gl.-Systeme, Beispiele Determinanten, 2x2, nxn, Regel v. Sarrus f. 3x3, Eigenschaften von Determinanten,

Laplace'scher Entwicklungs-Satz, Cramersche Regel, Inversenformel

o Funktionen

Darstellung von Funktionen (analyt., graphisch, einfach/doppelt logarithmisch, tabellarisch, lin. Interpolation, Info: Parameter-Darstellung).

Allg. Eigenschaften: Symmetrie, Monotonie, Periodizität Umkehrfunktion

Grenzwert: Anschaulich, epsilon-Def., Beispiele, Rechenregeln für Grenzwerte Stetigkeit, Rechnen mit stetigen Funktionen, Zwischenwert-Satz, Arten der Unstetigkeit

Polynome, Polynom-Division,

Gebrochen-rat. Funktionen, Partial-Bruch-Zerlegung

Trigonometrische Fktn., Arcus-Fktn., Exponential-Fkt., Logarithmus-Fkt.

Zahlenfolgen, Konvergenz bzw. Divergenz, Grenzwert, Rechenregeln für konvergente Folgen, wichtige Grenzwerte

Lehr- und Lernmethoden

Seminaristischer Unterricht in Präsenz (bzw. online live) mit integrierten Beispielen. Auf iLearn wird ein Skript mit integrierten, durchgerechneten Beispielen und Aufgaben zur Verfügung gestellt.

Besonderes

Es werden freiwillige Wahl-Zusatz-Fächer (WZF) angeboten.

Empfohlene Literaturliste

Aus einer mittlerweile riesigen Auswahl an einschlägigen Lehrbüchern exemplarisch ausgewählte Lehrbücher:

- Christopher Dietmaier: Mathematik für angewandte Wissenschaften, Springer-Spektrum, ISBN-10: 978382742420 / ISBN-13: 978-3827424204
- 2. J. Koch; M. Stämpfle: Mathematik für das Ingenieurstudium, Carl Hanser, ISBN-10: 3446451668 / ISBN-13: 978-3446451667
- 3. Th. Westermann: Mathematik für Ingenieure, Springer-Vieweg, **eBook ISBN** 978-3-662-61323-8 /Softcover **ISBN** 978-3-662-61322-1
- 4. L. Papula: Mathematik für Ingenieure und Naturwissenschaftler, Springer-Vieweg

Gesamt-Lehrwerk aus mehreren Bänden, Arbeitsbuch, Formelsammlung

In Teilen etwas abstrakter, mit Anwendungen, moderne Aufmachung:

 L. Göllmann, R. Hübl, et.al: Mathematik für Ingenieure, Bd. 1 und 2, Springer-Vieweg, ISBN-10: 3662538660 / ISBN-13: 978-3662538661, ISBN-10: 3662538644 / ISBN-13: 978-3662538647

Aufgabensammlung:

https://www-user.tu-chemnitz.de/~rhaf/Aufgabensammlung/Sammlung/Aufgabensammlung.pdf

Rechenbeispiele und -methoden:

 G. Merziger, Th. Wirth: Repetitorium Höhere Mathematik, Binomi Verlag, ISBN-10: 3923923341 / ISBN-13: 978-3923923342

2. P. Furlan: Das gelbe Rechenbuch, Bd. 1, 2, 3. Verlag Martina Furlan, http://www.das-gelbe-rechenbuch.de/

Textbook in Englisch: http://www.math.odu.edu/~jhh/counter10.html

№-02 GRUNDLAGEN DER INGENIEURMATHEMATIK

Modul Nr.	W-02
Modulverantwortliche/r	Prof. Dr. Michael Moritz
Kursnummer und Kursname	WZF Grundlagen der Ingenieurmathematik
	W2101 Grundlagen der Ingenieurmathematik
Lehrende	Prof. Dr. Michael Moritz
	Prof. Dr. Thomas Stirner
Semester	2
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	Jährlich
Art der Lehrveranstaltungen	Pflichtfach, Wahlfach
Niveau	Undergraduate
SWS	4 SWS für Vorlesung (zusätzl. 2 SWS für WZF)
ECTS	5
Workload	Präsenzzeit: 60 Stunden (zusätzl. 30 Stunden für WZF)
	Selbststudium: 60 Stunden
	Virtueller Anteil: 30 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Methodisch: Strukturiertes Arbeiten und Kommunizieren der Überlegungen bzw. Ergebnisse; vom Bekannten zum Neuen, vom Einfachen zum Komplizierten, am konkreten Beispiel lernen/üben

o Ggf. Visualisierung

- o Zerlegen in übersichtliche Teilschritte
- je nach Fall: vom Speziellen zum Allgemeinen (induktiv) oder umgekehrt (deduktiv); evtl. Bewertung des Ergebnisses: auf Plausibil. prüfen, Proberechnung
- Trennung von Vermutungen/Annahmen und Tatsachen (und deren Gültigkeitsbereich)
- o klare und eindeutige Begriffe

Fachlich: Nach Abschluss des Moduls sind die Studierenden in der Lage

- mit einfachen Zahlenfolgen umzugehen und deren Grenzwerte zu bestimmen.
 Begriff und Eigenschaften des Grenzwertes für Zahlenfolgen und wichtige Grenzwerte sind bekannt.
- Typ. Beispiele von zusammengesetzten Funktionen abzuleiten. Ableitungsregeln und geometrische Interpretation der ersten Ableitung von expliziten, impliziten oder in Parameterform gegebenen Funktionen werden beherrscht und z.B. zur Berechnung von Grenzwerten angewandt. Die Berechnung von höheren Ableitungen wird durchgeführt.
- Mit endlichen Summen zu rechnen. Unendliche Zahlen-Reihen als Grenzwert der Folge der Partialsummen und die Begriffe Konvergenz bzw. Divergenz einer Reihe sind bekannt. Die Notwendigkeit von Konvergenzkriterien zum Rechnen mit Reihen wurde erklärt.
- Die Konvergenz-Eigenschaften der geometrischen Reihe und die Divergenz der harmonischen Reihe sind im Detail bekannt.
- Teleskop-Summen und Partialbruch-Zerlegung k\u00f6nnen an einschl\u00e4gigen Beispielen durchgef\u00fchrt werden.
- Vergleichs-Kriterien, Wurzel- und Quotienten-Kriterium und das Leibniz-Kriterium werden sicher beherrscht.

- o Die Konvergenz der alternierenden harmonischen Reihe wird gezeigt.
- Das Integral geometrisch zu interpretieren. Der Zusammenhang mit der Ableitung ("Hauptsatz"), die Begriffe "bestimmtes" und "unbestimmtes Integral", deren Rechenregeln und Grundintegrale sind verstanden. Integrationsmethoden wie partielle Integration, Substitution und Partialbruch-Zerlegung werden je nach Beispiel selbständig ausgewählt und angewandt.
 Es werden Flächen ebener Bereiche mit waagrechten oder senkrechten Streifen oder in Polarkoordinaten berechnet; dabei der Begriff des Mehrfach-Integrals erläutert. Die Berechnung von Bogenlängen von Kurven und Mantelfläche bzw. Volumina von Rotationskörpern werden bestimmt.
- Eine Funktion in eine Taylor-Reihe bzw. ein Taylor-Polynom zu entwickeln und einfache Fehler-Abschätzungen mit Hilfe des Restgliedes durchzuführen.
- Taylor- bzw. McLaurin-Entwicklungen wichtiger Funktionen und einige Anwendungen sind bekannt.
 - Der Begriff und die mathematische Struktur von Potenzreihen sind bekannt. Die systematische Untersuchung des Konvergenz-Bereiches einer Potenzreihe erfolgt selbständig.
- Begriff und Struktur einer Fourier-Reihe sind bekannt; period. Funktionen werden (evtl. unter Ausnutzung ihrer Symmetrie) entwickelt.
- Über das Gibbsche Phänomen und Spektren in Anwendungen wurde informiert.
- Funktionen von zwei Variablen geometrisch zu deuten: Fläche, Höhenlinien,
 Schnittkurven.

Die Bestimmung des Grenzwertes einer Funktion z = f(x,y) kann durchgeführt werden. Partielle Ableitungen erster Ordnung werden berechnet; die geometrische Bedeutung als Steigung der entspr. Schnittlinie ist klar.

Der Begriff des totalen Differenzials und sein Zusammenhang mit der Tangential-Ebene, der Richtungsableitung und dem Gradient sind klar, diese Größen können eigenständig berechnet werden.

Die zweiten Ableitungen, der Satz von Schwarz und die Bedingungen für Extrema stehen für eigene Berechnungen zur Verfügung.

Über den Satz von Taylor wurde informiert.

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbarkeit ist nicht gleich Anrechenbarkeit!

Verwendbar für andere Ing.-wissenschaftliche Studiengänge

Zugangs- bzw. empfohlene Voraussetzungen

Mathematik aus Vorsemester z.T. unumgänglich!

Inhalt

Differenzialrechnung

Sekante -> Tangente, Differenzenquotient -> Differenzial-Quotient,
Ableitungen der elementaren Funktionen, Ableitungsregeln, Ableitung der
Umkehrfunktion, Beispiele

Implizite Fktn. und deren 1. Ableitung

Tangenten und Normalen an eine Kurve, Schnittwinkel.

Das Differenzial, geom. Interpretation, Anwendungen, Vergleich mit exakter Rechnung

Mittelwertsatz, Satz von Rolle, Ableitung und Monotonie,

Regeln von Bernoulli-de l'Hospital zur Grenzwertbestimmung (und deren Grenzen)

Höhere Ableitungen (explizite, implizite Fktn)

o Endliche Summen

Summenzeichen, Binom. Satz, Arithm. Summe, Geom. Summe

o Zahlenreihen

Partialsumme, unendliche Reihe, Konvergenz, Divergenz,

Info: Bei unendlichen Summen kann i.A. nicht wie mit endlichen Summen gerechnet

werden. Notwendigkeit von Konvergenzkriterien

Geometrische Reihe, deren Konvergenz-Eigenschaften und Um-Indizierung,

Partial-Bruch-Zerlegung und Teleskop-Summen,

Linearkombination konvergenter Reihen

Divergenz der harmonischen Reihe

Minorantenkriterium, Majorantenkriterium, SUM_{k} k 1/k^p -Vergleichsreihe,

Quotienten- und Wurzelkriterium, Leibniz-Kriterium,

Info: Umordnung nicht absolut konvergenter Reihen

Integralrechnung

f(x)*dx als Flächenzuwachs, Hauptsatz für unbestimmte Integrale, Stammfunktion,

Info: Integral als Grenzwert einer unendlichen Summe

Bestimmtes und unbestimmtes Integral, Rechenregeln, Mittelwertsatz,

Verschieben bzw. Skalieren des Integrations-Intervalles, Hauptsatz für best.

Integrale, Grundintegrale, Partielle Integration, Substitution, Partialbruch-Zerlegung, Uneigentliche Integrale, Waagrechte und senkrechte Streifen, Flächenberechnung ebener Bereiche und Mehrfach-Integrale, Fläche in Polarkoordinaten, Jacobi-Determinante Bogenlänge, Mantelfläche, Volumen von Rotationskörpern

Taylor- & Potenzreihen

Taylor-Polynom, geom. Interpretation

Info: ein endliches Polynom kann z.B. sin(x) für $x \rightarrow Unendlich nicht beschreiben$

Notwendigkeit einer Fehlerabschätzung

Satz von Taylor, Lagrange-Restglied, Beispiele und Anwendungen

Reihen wichtiger Funktionen; Binominal-Entwicklung

Potenzreihen: Struktur, Wurzel- und Quotienten-Kriterium, Konvergenz-Bereich,

Konvergenz-Radius, Beispiele,

Integrieren und Differenzieren von Potenzreihen

Info: Multiplikation von Potenzreihen

o Fourier-Reihen

Period. Funktion, period. Fortsetzung, Minimale quadr. Abweichung, Orthogonalitätsrelationen, Fourier-Koeffizienten, Fourier-Reihe,

Satz von Dirichlet, Beispiele

Info: Oberschwingungen, Spektrum

Info: Gibbs'sches Phänomen

Symmetrie-Eigenschaften und deren Ausnutzung,

Fourier-Zerlegung im Komplexen

Info: Integration und Ableitung einer Fourier-Reihe

Info: Datenreduktion bei einem gepixelten Bild durch Fourier-Zerlegung

o Differenzialrechnung in mehreren Variablen

Höhenlinien, 3D-Darstellung von z = f(x,y)

Schnittkurven

Grenzwert (z.B. längs vektorieller Geraden mit allg. Richtungsvektor)

Stetigkeit

Partielle Ableitungen 1. Ordnung, Steigungen der Schnittlinien

Totales Differenzial und Richtungsableitung, Gradient, Anwendungen Satz von

H.A. Schwarz

Info: Taylor-Entwicklung in mehreren Variablen

Lehr- und Lernmethoden

Seminaristischer Unterricht mit integrierten Beispielen. Übungsblätter mit Lösungen auf iLearn

Besonderes

Es werden freiwillige Zusatz-Veranstaltungen angeboten, z.B. ein Wahlzusatz-Fach, das typischer Weise die Übungsblätter zum Gegenstand hat.

Empfohlene Literaturliste

Mathematik kommt nur vom Selber-MACHEN! Daher ist das sorgfältige (schriftliche!) Nachvollziehen von Beispielen und Lösen von Übungsaufgaben unerlässlich.

Aus einer Vielzahl von Mathematik-Büchern für Ingenieure seien exemplarisch ausgewählt:

- 1. Christopher Dietmaier: Mathematik für angewandte Wissenschaften, Springer-Spektrum, **ISBN-10**: 978382742420 / **ISBN-13**: 978-3827424204
- 2. Th. Westermann: Mathematik für Ingenieure, Springer-Vieweg, **ISBN-10**: 3642542891 / **ISBN-13**: 978-3642542893
- 3. L. Göllmann, R. Hübl, et.al: Mathematik für Ingenieure, Bd. 1 und 2, Springer-Vieweg, **ISBN-10**: 3662538660 / **ISBN-13**: 978-3662538661, **ISBN-10**: 3662538644 / **ISBN-13**: 978-3662538647
- 4. L. Papula: Mathematik für Ingenieure und Naturwissenschaftler, Springer-Vieweg

Gesamt-Lehrwerk aus mehreren Bänden, Arbeitsbuch, Formelsammlung

- 5. P. Furlan: Das gelbe Rechenbuch, Bd. 1, 2, 3. Verlag Martina Furlan, http://www.das-gelbe-rechenbuch.de/
- G. Merziger, Th. Wirth: Repetitorium Höhere Mathematik, Binomi Verlag, ISBN-10: 3923923341 / ISBN-13: 978-3923923342

Aufgabensammlung:

https://www-user.tu-chemnitz.de/~rhaf/Aufgabensammlung/Sammlung/Aufgabensammlung.pdf

Textbook in Englisch:

http://www.math.odu.edu/~jhh/counter10.html

OW-03 INFORMATIK

Modul Nr.	W-03
Modulverantwortliche/r	Prof. Dr. Stephan Scheuerer
Kursnummer und Kursname	W1102 Informatik 1
	W1103 Informatik Praktikum
	W2102 Informatik 2
Lehrende	Prof. Dr. Michael Drexl
	Peter Eimerich
	Prof. Dr. Robert Hable
	Prof. Dr. Helena Liebelt
	Prof. Dr. Stephan Scheuerer
Semester	1, 2
Dauer des Moduls	2 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	8
ECTS	10
Workload	Präsenzzeit: 120 Stunden
	Selbststudium: 120 Stunden
	Virtueller Anteil: 60 Stunden
	Gesamt: 300 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	10/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden sind mit den **Grundlagen der Informatik** vertraut und sind befähigt zum Einsatz von IT in der Praxis.

Lernziele:

- Zahlensysteme und Boolesche Algebra als zugrunde liegende Grundprinzipien der Informatik beherrschen.
- o Grundtechniken der Datenmodellierung, relationaler Datenbanken und SQL-Abfragen praktisch anwenden, z.B. in MS Access.
- o Grundlagen von Rechnernetzen und Fachbegriffe im Kontext korrekt anwenden.
- Werkzeuge zur Modellierung und Strukturierung von Abläufen problemspezifisch einsetzen.
- Durch Einführung in Internet/Web-Technologien moderne Informationssysteme, insb. Benutzeroberflächen, in den Grundlagen verstehen.
- Durch die Vorstellung von Hardware werden die Studierenden in die Lage versetzt, Leistungsdaten sicher einzuschätzen.
- Ein Einblick in die Organisation von Softwareprojekten befähigt die Studierenden, sich bei Projekten in Unternehmen einbringen und Softwareprojekte begleiten zu können.
- Durch eine Einführung in die Programmierung beherrschen die Studierenden die Grundelemente imperativer Programmierung und sind in der Lage, eigene Programme für die tägliche Arbeitspraxis zu entwickeln. Ein Verständnis zur Übertragung der allgemeinen Programmierprinzipien auf andere Programmiersprachen ist gegeben.
- Studierende haben analytische, strukturierte Vorgehensweisen entwickelt und insb. algorithmisches Denken erlernt, z.B. durch die Programmierung.

Nach Absolvieren des Moduls Informatik haben die Studierenden somit insb. folgende Kompetenzen erworben:

Fach- und Methodenkompetenz

Die Studierenden beherrschen die theoretischen und praktischen Grundlagen der Informatik, insb. zu theoretischen Grundlagen, Datenbanken, Rechnernetzen und Programmierung. Sie können problemspezifisch eigene, kleinere IT-gestützte Lösungen, z.B. Excel Makros oder Datenbanken entwickeln.

Der Erwerb von **sozialen Kompetenzen** steht bei diesem Modul naturgemäß nicht im Vordergrund, wird aber durch Kooperation der Studierenden und gemeinsames Erarbeiten von Lösungen im Informatik Praktikum gefördert.

Die **Selbstkompetenz** wird durch vertieftes selbständiges Erarbeiten und Lösen von Problemen gefördert. Durch die praktische Anwendung der IT und deren kritische Durchdringung erarbeiten sich die Studierende die Fähigkeit zum abstrakten und analytischen Denken.

Verwendbarkeit in diesem Studiengang

W-24 Operations Research

W-26 Betriebliche Informationssysteme

W-35 Data Science

Verwendbarkeit in anderen Studiengängen

Grundlagen der Informatik werden als Basiswissen für weitere Kurse im Bachelorstudium vorausgesetzt, z.B. für Betriebliche Informationssysteme oder Operations Research.

Zugangs- bzw. empfohlene Voraussetzungen

Keine

Inhalt

Kurs Informatik 1:

- o Einführung und historischer Rückblick
- o Informationsdarstellung (Codierung, Speicherformen für Text, Bilder und Musik)
- Zahlensysteme (Stellenwertsysteme allgemein, Umwandlung zw. Zahlensystemen, Ganze Zahlen inkl. B-Komplement, Divisions- und Multiplikationsmethode und Rückführung der Subtraktion auf die Addition, Reelle Zahlen mit Normierung und Speicherform, Datentypen in Programmiersprachen)
- Boolesche Algebra (Rechengesetze, disjunktive und konjunktive Normalform, Schaltnetze und Schaltwerke, Addierwerk, Aussagenlogik)
- Datenbanken und Datenmodellierung (Grundlagen Datenbanksysteme, ACID-Prinzip, Entity Relationship Modell, Überführung in das relationale Datenmodell, Normalisierung)
- Rechnernetze (Netzwerktopologien, Übertragungsmedien, Internet, OSI- und TCP/IP-Modell, Kommunikationsprozess, Protokolle, IP-Adressierung)
- Ablaufmodellierung (UML-Aktivitätsdiagramm, Struktogramm, Petri-Netze, BPMN)

Kurs Praktikum Informatik 1:

- o Erstellung einer Datenbank und SQL-Abfragen
- o Internet- und Webtechnologien (html, xml)
- Hardware-Grundlagen

Kurs Informatik 2:

- Vorgehen im Software-Engineering
- Makros in Excel erstellen und nachbearbeiten, Grundlagen VBA

- Grundlegende Programmelemente (Variablen, Konstanten, Operatoren, Arrays, Typumwandlung)
- Kontrollstrukturen (bedingte und mehrseitige Fallauswahl, bedingte und z\u00e4hlergesteuerte Wiederholung)
- Prozeduren und Funktionen (Wert- und Referenzparameter, optionale Parameter, vordefinierte Funktionen)
- Such- und Sortieralgorithmen in VBA (Lineare und Binäre Suche, Bubble-, Insertion- und Quick-Sort)
- Programmieraufgaben (z.B. Berechnen einer konvexen Hülle, Petri-Netz Simulator)

Lehr- und Lernmethoden

Vorlesung, Selbstkontrollfragen und Computer-Übungen

Besonderes

Computer stehen zur Verfügung, Bring Your Own Device (BYOD) wird ermöglicht

Empfohlene Literaturliste

- 1. Helmut Herold, Bruno Lutz, Jürgen Wohlrab: Grundlagen der Informatik, Pearson, München 3. Aufl., 2017
- 2. Heinz-Peter Gumm, Manfred Sommer: Einführung in die Informatik, Oldenbourg Verlag, München, 10. Aufl., 2013
- 3. Paul Levi, Ulrich Rembold: Einführung in die Informatik für Naturwissenschaftler und Ingenieure, Hanser, München, 4. Aufl., 2002

- Uwe Schneider (Hrsg.): Taschenbuch der Informatik, Hanser-Verlag, Leipzig,
 Aufl., 2012
- 5. Thomas Joos, Michael Kurts, Christoph Volkmann: Informationstechnologie Grundlagen, Herdt-Verlag, 6. Ausgabe, 2014
- Sascha Kersken: IT-Handbuch für Fachinformatiker, Galileo Computing, Bonn,
 8. Aufl., 2017
- 7. Fuchs Elmar: SQL Grundlagen und Datenbankdesign, Herdt-Verlag, Bodenheim, 5. Ausgabe, 2018
- 8. Birgit Swoboda, Sabine Buhlert: Access 2019 Grundlagen für Datenbankentwickler, Herdt-Verlag, Bodenheim, 1. Ausgabe, 2019 (ACC2019D)
- 9. Schicker Edwin: Datenbanken und SQL, Springer-Vieweg, Heidelberg, 5. Auflage, 2017
- Bratvogel Karsten, Schmidt Klaus: Netzwerke Grundlagen, Herdt-Verlag, 11.
 Ausgabe, 2019 (NW_2019)
- 11. Dittfurth Andreas: Netzwerke Protokolle und Dienste, Herdt-Verlag, 9. Ausgabe, 2017 (NWPD)
- 12. Allweyer Thomas: BPMN 2.0 Business Process Model and Notation. Books on demand, Norderstedt, 3. Auflage, 2015
- 13. Balzert Helmut: Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering, Spektrum Akademischer Verlag, Heidelberg, 3. Aufl., 2009
- 14. Ricardo Hernández Garcia: Excel 2016 Automatisierung und Programmierung, Herdt-Verlag, Bodenheim, 1. Ausgabe, 2016 (EX2016P)
- 15. Tina Wegener, Ralph Steyer: Programmierung Grundlagen (Java), Herdt-Verlag, Bodenheim, 2. Ausgabe, 1. Aktualisierung, 2014 (PG)
- 16. Ralph Steyer: Programmierung Grundlagen (Python), Herdt-Verlag, Bodenheim, 1. Ausgabe, 2018 (PGPY)

OW-04 TECHNISCHE MECHANIK

Modul Nr.	W-04
Modulverantwortliche/r	Norbert Sosnowsky
Kursnummer und Kursname	WZF Technische Mechanik 1 (Statik)
	W1104 Technische Mechanik 1 (Statik)
	W2103 Technische Mechanik 2 (Festigkeitslehre)
	W2103 WZF Technische Mechanik 2
Lehrende	Prof. Dr. Christian Bongmba
	Norbert Sosnowsky
Semester	1, 2
Dauer des Moduls	2 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach, Wahlfach
Niveau	Undergraduate
SWS	8 SWS für Vorlesung (zusätzl. 4 SWS für WZF)
ECTS	10
Workload	Präsenzzeit: 120 Stunden (zusätzl. 60 Stunden für WZF)
	Selbststudium: 90 Stunden
	Virtueller Anteil: 90 Stunden
	Gesamt: 300 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	10/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Vermittlung der grundlegenden Prinzipien und Methoden der technischen Mechanik ist das Hauptziel der Vorlesung. Die Anwendung der Prinzipien und Methoden der Mechanik

zur Lösung von technisch relevanter Aufgabenstellung der Statik wie die Ermittlung von Schnitt- und Auflagergrößensteht im Mittelpunkt im 1. Semester. Die Einführung in die Tragwerksberechnung anhand ausgewählter Themen aus der Elastizitätstheorie und Festigkeitslehre ist der Kern der Vorlesung im 2. Semester.

Die Studierenden sind danach in der Lage:

- mechanische Ersatzsysteme zu interpretieren, das Schnittprinzip anzuwenden, die Gleichgewichts-bedingungen aufzustellen und die entstehenden Gleichungssysteme zu lösen,
- o die inneren Belastungen (Schnittgrößen) mechanischer Systeme zu berechnen,
- o Schwerpunkte zu bestimmen und den Einfluss der Reibung zu berücksichtigen,
- Spannungen und Verformungen mechanischer Ersatzsysteme für die drei Haupt-Belastungsarten (Zug/Druck, Biegung, Torsion) zu bestimmen,
- einfache Fragestellungen zum mehrdimensionalen Spannungs- und Verformungszustand zu beantworten,
- den Arbeitsbegriff auf einfache Fragestellungen der Statik und Elastostatik anzuwenden
- o und die elementaren Knickfälle (Euler) zu berechnen

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbarkeit ist nicht gleich Anrechenbarkeit!

Entsprechende Ingenieurstudiengänge

Zugangs- bzw. empfohlene Voraussetzungen

W-01 Mathematische Grundlagen

Inhalt

Inhalt - Kurs Technische Mechanik I

- o Grundbegriffe
- o Kräfte mit gemeinsamem Angriffspunkt
- o Allgemeine Kraftsysteme und Gleichgewicht des starren Körpers
- o Schwerpunkt
- o Lagerreaktionen
- Fachwerke
- o Schnittgrößen an Balken, Rahmen, Bogen
- o Arbeit
- o Haftung und Reibung

Inhalt - Kurs Technische Mechanik II

- o Zug und Druck in Stäben
- o Spannungszustand, Verzerrungszustand, Elastizitätsgesetz
- o Balkenbiegung
- o Torsion
- o Arbeitsbegriff in der Elastostatik
- Knickung

Lehr- und Lernmethoden

Lehrform: Seminaristischer Unterricht / Übung

Medienform: Tafelanschrieb, Powerpoint, Übungen und ergänzende Vorlesungsunterla-

gen über iLearn

Besonderes

Keine

Empfohlene Literaturliste

- 1. Gross D., Hauger W., Schröder, Wall (2013), Technische Mechanik 1, 12. Aufl., Springer, Berlin
- 2. Bruhns Otto T. Elemente der Mechanik I Einführung, Statik, Shaker Verlag, Aachen 2001
- 3. Gross D., Hauger W., Schröder, Wall (2013), Technische Mechanik 1, 12. Aufl., Springer, Berlin

OW-05 MARKETING

Modul Nr.	W-05
Modulverantwortliche/r	Prof. Dr. Oliver Neumann
Kursnummer und Kursname	W1105 Marketing
Lehrende	Holger Enge
Semester	1
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 50 Stunden
	Virtueller Anteil: 40 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

In Märkten mit Produkten und Leistungen, die immer mehr gegeneinander austauschbar sind, in einer Umgebung immer zunehmender Informationsüberlastung wird es für Unternehmen immer schwieriger, sich eindeutig zu positionieren.

Ziel des Kurses ist es, den Studierenden die grundlegenden Konzepte und Begriffe des strategischen und des operativen Marketing zu vermitteln. Sie erhalten Einblick in unterschiedliche Marketingansätze und werden vertraut mit der Positionierung am Markt und den damit einhergehenden Schwierigkeiten.

Den Studierenden werden die Grundlagen des Marketing nahegebracht, es wird ihnen das Grundwerkzeug anhand der Marketing-Mix vermittelt. Sie lernen die Stellhebel des Marketing verstehen, lernen, sich mit dem konzeptionellen Zusammenspiel der Marketing-Mix-Instrumente und der besonderen Rolle des Menschen im Marketing anhand von praktischen Beispielen auseinander setzen. Weiterführend werden sie mit den Unterschieden und Besonderheiten von Konsumgüter-, Industriegüter- und Dienstleistungsmarketing vertraut gemacht.

Nach Absolvieren des Moduls Marketing haben die Studierenden somit folgende Kompetenzen erworben:

Fach- und Methodenkompetenz: Die Studierenden beherrschen die theoretischen und praktischen Grundlagen des Marketing. Sie können problemspezifisch, kleinere Marketinglösungen entwickeln.

Der Erwerb von **sozialen und persönlichen Kompetenzen** steht bei diesem Modul naturgemäß nicht im Vordergrund, wird aber durch Kooperation der Studierenden und gemeinsames Erarbeiten von Lösungen gefördert.

Die **Selbstkompetenz** wird durch vertieftes selbständiges Erarbeiten und Lösen von Problemen gefördert. Durch beispielhafte, praktische Anwendung und deren kritische Durchdringung erarbeiten sich die Studierenden die Fähigkeit zum abstrakten und analytischen Denken.

Verwendbarkeit in diesem und in anderen Studiengängen

Für jeden grundständigen Bachelor-Studiengang mit wirtschaftlichen Inhalten

Zugangs- bzw. empfohlene Voraussetzungen

Keine

Inhalt

Jeder Kauf ist letztendlich ein Vertrauensvorschuss des Kunden an den Hersteller bzw. Verkäufer. Dieser Vertrauensvorschuss wird durch Maßnahmen des Marketing unterstützt.

Es werden anhand von Beispielen die vier grundlegenden Stellhebel des Marketing (Marketing-Mix) erklärt. Weiterführend wird auf die Besonderheiten des Industriegüter- und des Dienstleistungsmarketing eingegangen. Damit lernen die Studierenden die Marketingstellhebel zu analysieren und adäquat anzuwenden und kennen die Besonderheiten im Industriegüter- und Dienstleistungsmarketing.

Im weiteren wird auf Marktforschung, Unternehmensanalyse und Informationsbeschaffung eingegangen, besondere rechtliche Aspekte des Marketing werden erläutert.

Gliederung der Veranstaltung

1. Grundlagen, Begriffsbestimmung

Geschichte des Marketing, Aspekte, Verwendung des Begriffes Marketing, strategische Ausrichtungen des Marketing, Begriffsbestimmung - Märkte, Unternehmensziele, Ziele des Marketing, Zielbeziehungen, Marketingstrategien, Marktsegmentierung/Marktbearbeitungsstrategien, Produkt-Markt-Kombinationen, kundenorientierte Strategien, Konsumentenverhalten, Konsumentenbedürfnisse, psychische und individuelle Determinanten des Verhaltens, das marketingpolitische Instrumentarium

2. Produktpolitik

Begriffsklärung, Ziele der Produktpolitik, verkaufsfördernde Faktoren- der Produktnutzen, was ist ein optimales Produkt?, Markenpolitik, Typisierung von Produkten, Aufgaben der Produktpolitik, Produktlebenszyklus, Portfolioanalyse, Programm- / Sortimentspolitik, produktbegleitende Maßnahmen, Kundendienst / Service

3. Preispolitik

Begriffsklärung, Entscheidungsfelder der Preispolitik, Marktformen, Determinanten der Preisfindung, Preiskomponenten, Preisstrategien, Preisdifferenzierung, psychologische Preiswirkung, preispsychologische Konsumententypen, psychologische Preisgestaltung, Konditionenpolitik

4. Distributionspolitik

Begriffsklärung, Absatzwege, direkter Absatz, indirekter Absatz, Funktionen des Handels, Sonderformen der Distribution, Logistik, Neue Medien in der Distributionspolitik

5. Kommunikationspolitik

Begriffsklärung, Kommunikationsplanungsprozess, Kommunikationsstrategie - Die Botschaft, Instrumentarium der Unternehmenskommunikation, Corporate Identity

6. Marktanalyse, Marktforschung, Marketingforschung

Begriffsklärung, Aufgaben der Marktforschung, Formen der Marktforschung, Marktforschungsprozess, Sekundärforschung, Primärforschung, Methoden der Primärforschung, Erhebungsverfahren, Outsourcing oder Inhouseforschung, Marktforschung und Ethik

7. Industriegütermarketing / Dienstleistungsmarketing

Industriegütermarketing, Besonderheiten des Industriegütermarketing, Kaufverhalten im Industriegütermarketing, Buying-Center

Dienstleistungsmarketing, Besonderheiten des Dienstleistungsmarketing, Wertschöpfungskette im Dienstleistungsmarketing, Differenzierung der angebotenen Leistung gegenüber der Konkurrenz, Qualität und Dienstleistung

8. Rechtliche Aspekte

Wettbewerbsrecht, Gesetz gegen den unlauteren Wettbewerb (UWG), Kartellverbot (GWB), Schutzrechte für Marken, Produkte und Verfahren von Unternehmen, Schutz von Marken und geschäftlichen Bezeichnungen, Geschmacksmusterschutz, Gebrauchsmusterschutz, Patentschutz, Verbraucherschutz, Urheberrecht, Datenschutz-Grundverordnung.

Lehr- und Lernmethoden

Seminaristischer Unterricht / Hausübungen

Medienform: Beamer, Tafelanschrieb in Kombination mit Skriptum

Besonderes

keine Angabe

Empfohlene Literaturliste

- 1. Kotler P., Armstrong G., Saunders J., Wong V., **Grundlagen des Marketing**, Pearson, München
- 2. Kotler P., Keller K.-L., Opresnik M.-O., **Marketing-Management** Konzepte Instrumente Unternehmensfallstudien, Pearson, München
- 3. Meffert H., Burmann C., Kirchgeorg M., **Marketing** Grundlagen marktorientierter Unternehmensführung, Springer-Gabler, Wiesbaden
- 4. Backhaus K., Voeth M., **Industriegütermarketing**, Vahlen, München
- 5. Schürmann M., **Marketing** In vier Schritten zum eigenen Marketingkonzept, vdf Hochschulverlag, Zürich
- 6. Esch F. R., Strategie und Technik der Markenführung, Vahlen, München
- 7. Kroeber-Riehl W., Meyer-Hentschel G., **Werbung** Steuerung des Konsumentenverhaltens, Physica-Verlag, Würzburg

○W-06 UNTERNEHMERISCHE GRUNDLAGEN

Modul Nr.	W-06
Modulverantwortliche/r	Prof. Dr. Jutta Stirner
Kursnummer und Kursname	WZF Bilanzierung
	W1106 Grundlagen BWL/VWL
	W1107 Bilanzierung
Lehrende	Dr. Alois Bauer
	Prof. Dr. Oliver Neumann
	Carina Forman
Semester	1
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach, Wahlfach
Niveau	Undergraduate
SWS	8 SWS für Vorlesung (zusätzl. 2 SWS für WZF)
ECTS	8
Workload	Präsenzzeit: 120 Stunden (zusätzl. 30 Stunden für WZF)
	Selbststudium: 60 Stunden
	Virtueller Anteil: 60 Stunden
	Gesamt: 240 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	8/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Fachkompetenz:

In einer modernen Wirtschaftswelt bilden fundierte Grundkenntnisse betriebswirtschaftlicher und volkswirtschaftlicher Abläufe und Zusammenhänge, die Basis für jede unternehmerische Entscheidung und demzufolge für die Wahrnehmung von Aufgaben in der Unternehmensführung. Insbesondere für Wirtschaftsingenieure, die das Bindeglied zwischen dem technischen und dem wirtschaftlichen Bereich in Unternehmen darstellen, sind umfangreiche betriebs- sowie volkswirtschaftliche Kenntnisse unerlässlich.

Die Studierenden gewinnen in dieser Lehrveranstaltung einen grundlegenden Überblick über die wichtigsten betriebswirtschaftlichen Themengebiete, sowie über die betrieblichen Abläufe und Zusammenhänge in Betrieben und Unternehmen. Das geschaffene Verständnis befähigt sie, betriebswirtschaftliche Abläufe zu verstehen, Problemfelder zu erkennen und zu analysieren, um geeignete Lösungsstrategien zu entwickeln.

Die Studierenden sollen das System der kaufmännischen Buchführung als einen in sich geschlossenen Kreislauf verstehen und anwenden können. Die Systematik der kaufmännischen Buchführung anhand der Verbuchung typischer Geschäftsfälle und die Möglichkeit der Ansammlung, Aufbereitung und Auswertung buchhalterischer Daten für betriebliche Entscheidungsprozesse lernen und anwenden können. Sie sollen den wirtschaftlichen Erfolg des Unternehmens periodengerecht und zuverlässig ermitteln.

Die Studenten/innen sollen folgende Themengebiete verstehen und anwenden können:

- o Zweck, Aufbau und Inhalt der Bestandteile von Jahresabschlüssen,
- Bilanzarten (mit Schwerpunkt auf Handels- und Steuerbilanz),
- o Grundsätze und Prinzipien für die Erstellung von Jahresabschlüssen,
- o Ansatz- und Bewertungsvorschriften für die Bilanz,
- o Inhalte und Gestaltung der GuV, des Anhangs und des Lageberichtes.

Neben dem Verständnis für betriebsinterne Zusammenhänge ist auch ein Verständnis für die Abläufe und Zusammenhänge in einer Volkswirtschaft gefragt, um für das eigene

Unternehmen die richtigen Schlüsse aus der gesamtökonomischen Lage ziehen zu können. Die Studierenden gewinnen im Teilmodul Volkswirtschaftslehre einen grundlegenden Überblick über die wichtigsten volkswirtschaftlichen Themengebiete. Dazu wird zum einen das Unternehmen als Wirtschaftsakteur modelliert, welcher sich mit Marktgegebenheiten auseinandersetzten muss (Mikroökonomie). Zudem wird vermittelt, welche Faktoren die Wirtschaftskraft einer Volkswirtschaft maßgeblich beeinflussen und was gesamtwirtschaftliche Kennzahlen aussagen (Makroökonomie).

Methodenkompetenz:

Die Studierenden gewinnen einen ersten Überblick über die wesentlichen betriebswirtschaftlichen Methoden, sowohl mathematischer als auch juristischer Art.

Sozialkompetenz:

Anwendungsorientiertes Wissen im externen Rechnungswesen und Kenntnis der gesetzlichen Grundlagen in Handels- und Steuerrecht sind dabei die Basis für gesetzeskonformes Verhalten.

Verwendbarkeit in diesem und in anderen Studiengängen

Steuern

Investitionsrechnung und technisches Controlling

Finanzierung

Zugangs- bzw. empfohlene Voraussetzungen

Keine

Inhalt

Inhalt BWL

- 1. Gegenstand und Grundlagen der Betriebswirtschaftslehre
 - 1.1 Wissenschaftliche Einordnung der Betriebswirtschaftslehre
 - 1.2 Der betriebliche Transformationsprozess
- 2. Rechnungswesen und Bilanzierung
 - 2.1 Grundlagen des internen und externen Rechnungswesens
 - 2.2 Bilanz und Gewinn- und Verlustrechnung
 - 2.3 Finanz- und ertragswirtschaftliche Ebenen
 - 2.4 Grundzüge der Kapitalflussrechnung
- 3 Kosten- und Leistungsrechnung
 - 3.1 Ziele und Aufgaben der Kosten- und Leistungsrechnung
 - 3.2 Kostenarten, Kostenstellen und Kostenträgerrechnung
 - 3.3 Kostenrechnungssysteme
- 4 Finanzierung und Investition
 - 4.1 Grundlagen der Finanzierung und der Zinsrechnung
 - 4.2 Kapitalbedarfsermittlung
 - 4.3 Innenfinanzierung/Außenfinanzierung
 - 4.4 Grundlagen der Investition
 - 4.5 Investitionsplanung
 - 4.6 Investitionsrechnung
- 5 Unternehmensrechtsformen

- 6 Organisation
 - 6.1 Aufbau-/Ablauforganisation
 - 6.2 Grundformen der betrieblichen Organisation

Inhalt Bilanzierung

- 1. Grundlagen des betrieblichen Rechnungswesens
- 2. Rechtliche Grundlagen der Buchhaltung
- 3. Das System der kaufmännischen Buchführung
 - Inventur, Inventar, Bilanz, Bestandskonten, Erfolgskonten, GuV,
 Umsatzsteuer, Industriekontenrahmen
- 4. Spezielle Buchungsfälle
 - 4.1 Buchungen im Einkaufsbereich
 - 4.2 Buchungen im Fertigungsbereich
 - 4.3 Buchungen im Verkaufsbereich
- 5 Bestandsveränderungen an unfertigen und fertigen Erzeugnissen
- 6 Abschreibungen auf Anlagen
- 7 Abschreibungen auf Forderungen
- 8 Zeitliche Abgrenzung
- 9 Die Buchung von Rückstellungen
- 10 Bestandteile des Jahresabschlusses
- 11 Rechtliche Grundlagen für Jahresabschlüsse

12 Grundsätze und Prinzipien der Bilanzierung

- 12.1 Ansatz und Bewertung einzelner Bilanzpositionen der Aktiva
- 12.2 Ansatz und Bewertung einzelner Bilanzpositionen der Passiva
- 12.3 Die Gewinn-und-Verlust-Rechnung
- 12.4 Der Anhang
- 12.5 Der Lagebericht

Inhalt Volkswirtschaftslehre

- 1. Grundlagen des Ökonomischen Denkens
- 2. Märkte Zusammentreffen von Angebot und Nachfrage
- 3. Elastizitäten und wirtschaftspolitische Maßnahmen
- 4. Marktversagen
- 5. Zwischenstaatlicher Handel
- 6. Wettbewerb
- 7. Messung des Volkseinkommens
- 8. Wachstum und Produktion
- 9. Das monetäre System und das Finanzsystem

Lehr- und Lernmethoden

Seminaristischer Unterricht

Besonderes

keine Angabe

Empfohlene Literaturliste

- 1. Wöhe, Günter; Döring, Ulrich: Einführung in die allgemeine Betriebswirtschaftslehre, 27. Auflage, München, ISBN 978-3-8006-6300-2
- Härdler, Jürgen; Gonschorek, Torsten: Betriebswirtschaftslehre für Ingenieure,
 Auflage, München, 2016, ISBN 978-3-446-44364-8
- 3. Thommen, Jean-Paul; Achleitner, Ann-Kristin; Gilbert Dirk Ulrich; Hachmeister, Dirk; Jarchow, Svenja; Kaiser, Gernot: Allgemeine Betriebswirtschaftslehre, 9. Auflage, Zürich, 2020, ISBN 978-3-03909-055-6
- 4. Töpfer, Armin: Betriebswirtschaftslehre, 2. Auflage, Berlin Heidelberg, 2007 ISBN 978-3-540-49394-5
- 5. Coenenberg, A.G.; Haller, A.; Schultze, W. (2018): Jahresabschluss und Jahresabschlussanalyse. Betriebswirtschaftliche, handelsrechtliche, steuerliche und internationale Grundsätze- HGB, IFRS, US-GAAP, 25. Auflage. Stuttgart: Schäffer-Poeschel.
- Eisele, W.; Knobloch, A.P. (2018): Technik des betrieblichen Rechnungswesens.
 Buchführung und Bilanzierung, Kosten- und Leistungsrechnung, Sonderbilanzen.
 Auflage. München: Vahlen.
- 7. Hahn, H.; Wilkens, K. (2007); Buchhaltung und Bilanz. Teil A: Grundlagen der Buchhaltung. Einführung am Beispiel der Industriebuchhaltung. 7. Auflage. München: Oldenburg
- 8. Mankiw, N. (2012), Grundzüge der Volkswirtschaftslehre, Stuttgart: Schäffer-Poeschel Verlag
- 9. Krugman, P. und Wells, R. (2017), Volkswirtschaftslehre, Stuttgart: Schäffer-Poeschel Verlag

- 10. Fritsch, M. (2018), Marktversagen und Wirtschaftspolitik, Vahlen Verlag, 10. Auflage
- 11. Endres, A. (2013), Umweltökonomie, Verlag W. Kohlhammer, Stuttgart

WZF BILANZIERUNG

Prüfungsarten

Teil der Modulprüfung

W1106 GRUNDLAGEN BWL/VWL

- 1. Grundlagen (Wirtschaften, Produktionsfaktoren, Kennzahlen)
- 2. Globalisierung
- 3. Grundzüge internes Rechnungswesen (Kostenrechnung)
- 4. Rechtsformen
- 5. Grundlagen der Materialwirtschaft
- 6. Grundlagen zu Absatz/Marketing
- 7. Grundlagen zu Personalwesen und Unternehmensführung
- 8. Mikro- und makroökonomische Grundlagen
- 9. Volkswirtschaftslehre als Wissenschaft
- 10. Angebots- und Nachfrageverhalten von Unternehmen und Haushalten

- 11. Preisbildung bei unterschiedlichen Markt- und Wettbewerbsbedingungen
- 12. Träger, Ziele und Mittel der Wirtschaftspolitik
- 13. Möglichkeiten und Grenzen wirtschaftspolitischer Gestaltung im Wandel gesellschaftlicher und ökologischer Herausforderungen
- 14. Binnen- und außenwirtschaftliche Ursachen und Folgen gesamtwirtschaftlicher Instabilität
- 15. Einblick in die Bedeutung staatlicher Einnahmen und Ausgaben sowie der öffentlichen Verschuldung
- 16. Außenwirtschaftliche und währungspolitische Grundlagen

Prüfungsarten

Teil der Modulprüfung

Lehr- und Lern-Methoden

Seminaristischer Unterricht und Übung/Fallbeispiele

Skriptum, Tafelarbeit, Folienpräsentation

Empfohlene Literaturliste

Für VWL:

- Mankiw/Taylor, Grundzüge der Volkswirtschaftslehre, Schäffer-Poeschel, 7.
 Auflage 2018
- Fritsch/Wein/Ewers, Marktversagen und Wirtschaftspolitik, Vahlen Verlag, 10.
 Auflage 2018

- Felderer/Homburg, Makroökonomik und Neue Makroökonomik, Springer Verlag, 9. Auflage, 2005
- 4. Rübel, Grundlagen der monetären Außenwirtschaft, Oldenbourg Verlag, 3. Auflage, 2009
- 5. Griffiths/Wall, Applied Economics, Prentice Hall, 12th Edition, 2011

W1107 BILANZIERUNG

Inhalt

- Die Organisation der Buchführung
- (Grundsätze ordnungsgemäßer Buchhaltung, Bestandskonten, Erfolgskonten, GuV, Bilanz)
- Spezielle Buchungsfälle
- (Die Umsatzsteuer in der Buchführung, Buchungen im Einkaufsbereich, im Fertigungsbereich und im Verkaufsbereich)
- o Das Problem einer periodengerechter Erfolgsabgrenzung
- Abschreibungen auf Anlagen und Forderungen
- o Adressaten des Jahresabschlusses und deren Informationsbedürfnisse

Prüfungsarten

Teil der Modulprüfung

Lehr- und Lern-Methoden

Seminaristischer Unterricht und Übung

Präsentationen, Folien, Tafel, Skriptum

Empfohlene Literaturliste

- 1. Gesetzestexte
- 2. Schmolke/Deitermann, Industrielles Rechnungswesen –IKR, Winklers Verlag, 39. Auflage, 2010
- 3. Bornhofen, Manfred, Buchführung 1 DATEV-Kontenrahmen 2014, Dr. Gabler Verlag, 26. Auflage, 2014
- 4. Bornhofen, Manfred, Buchführung 2 DATEV-Kontenrahmen 2013,
- 5. Dr. Gabler Verlag, 25. Auflage, 2014

OW-07 WIRTSCHAFTSRECHT

Modul Nr.	W-07
Modulverantwortliche/r	Prof. Dr. Jutta Stirner
Kursnummer und Kursname	WZF Steuern
	W2105 Wirtschaftsprivatrecht
	W2106 Steuern
Lehrende	Prof. Dr. Jutta Stirner
	Prof. Dr. Josef Langenecker
	Carina Forman
Semester	2
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach, Wahlfach
Niveau	Undergraduate
SWS	8 SWS für Vorlesung (zusätzl. 2 SWS für WZF)
ECTS	10
Workload	Präsenzzeit: 120 Stunden (zusätzl. 30 Stunden für WZF)
	Selbststudium: 120 Stunden
	Virtueller Anteil: 60 Stunden
	Gesamt: 300 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	10/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Fachkompetenz:

Um die Teilnehmer in die Lage zu versetzen, die typischen juristischen Risiken im Unternehmen aufzudecken und konkrete Lösungsvorschläge aufzuzeigen, vermittelt dieses Modul grundlegende Kompetenzen im Bereich des Risiko- und Compliance Managements und sensibilisiert zugleich für Vorgaben, Regelungen und Normen, die Mitarbeiterinnen und Mitarbeiter sowie Unternehmen zu kennen, zu beachten und deren Befolgung sie zu dokumentieren haben.

Mögliche Auswirkungen von Fehlern in diesem Bereich auf das Unternehmen und organisatorische Maßnahmen zur Gegensteuerung und Prophylaxe werden dabei aufgezeigt. Die Studierenden werden dabei nicht zu Juristen mit Einzelfallwissen ausgebildet, sondern primär für die Thematiken sensibilisiert. Darüber hinaus sollen die Studierenden in ihrem späteren Berufsleben frühzeitig erkennen können, ob aktuelle juristische Problemstellungen noch innerbetrieblich zu lösen sind, oder ob Juristen beizuziehen sind.

Im Teilmodul "Wirtschaftsprivatrecht" liegt der Schwerpunkt auf dem Vertragsrecht, in welchem die Studierenden auch Einzelfallwissen z.B. im Bereich der allgemeinen Geschäftsbedingungen und der Stellvertretung erwerben. Sie können mit diesen Themen selbständig umgehen und Mitarbeitern diesbezügliche Weisungen erteilen.

Speziell werden im Teil "Steuern" grundlegende Vorschriften der Unternehmensbesteuerung sowie die steuerrechtlichen Spezifika ausgewählter Rechtsformen dargestellt. Ein Überblick über die Grundzüge des Ertrags- und Umsatzsteuergesetzes, sowie über die grundsätzlichen Unterschiede bei der Besteuerung von Personen- und Kapitalgesellschaften komplettieren die Vorlesung.

Methodenkompetenz:

Die Studierenden kennen die juristische Arbeitsweise und können einfache Sachverhalte unter die wichtigsten Normen des BGB subsumieren. Dabei können Sie Meinungsstreitigkeiten einordnen und mit ihnen umgehen. Das Auffinden der erforderlichen Informationen in Kommentaren, Urteilen und Datenbanken wird verinnerlicht.

Sozialkompetenz:

Die Kenntnis der gesetzlichen Grundlagen des Wirtschaftsrechts ist die Basis für gesetzeskonformes Verhalten. Es wird Bewusstsein für die sozialen und finanziellen Kosten von Rechtsstreitigkeiten geschaffen und konsensorientierte Möglichkeiten der Lösung von Interessenkonflikten aufgezeigt.

Verwendbarkeit in diesem Studiengang

W-18 Investition und Finanzierung

W-32 Betriebliche Organisation, Einkauf und Vertrieb

Verwendbarkeit in anderen Studiengängen

W-18 Investition und Finanzierung

W-32 Betriebliche Organisation, Einkauf und Vertrieb

Zugangs- bzw. empfohlene Voraussetzungen

Grundlagen BWL

- o Einzelne Risikobereiche im Unternehmen
- o Vertragsarten: Kaufvertrag, Werkvertrag, Werklieferungsvertrag, Dienstvertrag
- Mögliche Folgen von Produktfehlern
- Übersicht über die Rechtsverhältnisse und die wichtigsten Ansprüche in der Lieferkette

- o Die neue Rechtslage zur Sachmängelhaftung
- o Die Produkthaftung nach dem Produkthaftungsgesetz
- o Grundzüge des Schuldrechts
- o Grenzen der Vertragsfreiheit
- o AGB-Einbeziehung und -Kontrolle nach dem neuen Recht
- Überblick über das allgemeine Wirtschaftsrecht (Handels- und Gesellschaftsrecht)
- o Grundzüge des Wirtschaftsstrafrechts
- Insolvenz
- Stufenaufbau des ESt-Rechts
- Wesentliche Begriffe des ESt-Rechts
- Methoden der Gewinnermittlung
- o Verlustberücksichtigung im ESt-Recht
- Stufenaufbau des KSt-Rechts
- o Ermittlung des zu versteuernden Einkommens
- o Abziehbare und nichtabziehbare Aufwendungen
- o Verdeckte Gewinnausschüttungen und Einlagen
- o Stufenaufbau der GewSt-Schuld
- Steuertatbestände des UStG

Lehr- und Lernmethoden

Seminaristischer Unterricht und Übung

Besonderes

keine Angabe

Empfohlene Literaturliste

- 1. Scherer, Mühlbauer, Unterwiener u.a., Den Rücken frei: No risk, much fun!: Praxiswissen Risikomanagement und Compliancemanagement, ISBN-Nr. 3-937520-00
- 2. Birk / Desens / Tappe, Steuerrecht 2019/2020, 22. Auflage, C.F. Müller.
- 3. Bornhofen / Bornhofen, Steuerlehre 1, Allgemeines Steuerrecht, Abgabenordnung, Umsatzsteuer, Rechtslage 2020, 41. Auflage, Springer Gabler.
- 4. Bornhofen / Bornhofen, Steuerlehre 2, Einkommensteuer, Körperschaftsteuer, Gewerbesteuer, Rechtslage 2020, 41. Auflage, Springer Gabler
- 5. Jesgarzewski, Wirtschaftsprivatrecht, 4. Auflage, 2019, Springer Gabler

WZF STEUERN

Prüfungsarten

Teil der Modulprüfung

W2105 WIRTSCHAFTSPRIVATRECHT

Ziele

Um die Teilnehmer in die Lage zu versetzen, die typischen juristischen Risiken in Unternehmen aufzudecken und konkrete Lösungsvorschläge aufzuzeigen, vermittelt dieses Modul grundlegende Kompetenzen im Bereich des Risiko- und Compliance Managements und sensibilisiert zugleich für Vorgaben, Regelungen und Normen, die Mitarbeiterinnen und Mitarbeiter sowie Unternehmen zu kennen, zu beachten und deren Befolgung sie zu dokumentieren haben.

Mögliche Auswirkungen von Fehlern in diesem Bereich auf das Unternehmen und organisatorische Maßnahmen zur Gegensteuerung und Prophylaxe werden dabei aufgezeigt. Die Studierenden werden dabei nicht zu Juristen mit Einzelfallwissen ausgebildet, sondern primär für die Thematiken sensibilisiert. Darüber hinaus sollen die Studierenden in ihrem späteren Berufsleben frühzeitig erkennen können, ob aktuelle juristische Problemstellungen noch innerbetrieblich zu lösen sind, oder ob Juristen beizuziehen sind.

Ergänzend werden im Teil "Steuern" grundlegende Vorschriften der Unternehmensbesteuerung sowie die steuerrechtlichen Spezifika ausgewählter Rechtsformen dargestellt. Ein Überblick über die Grundzüge des Ertrags- und Umsatzsteuerrechts, sowie über die grundsätzlichen Unterschiede bei der Besteuerung von Personen- und Kapitalgesellschaften komplettieren die Vorlesung.

- Einzelne Risikobereiche im Unternehmen
- o Allgemeine Rechtsgeschäftslehre, Willenserklärungen
- o Vertragsarten: Kaufvertrag, Werkvertrag, Werklieferungsvertrag, Dienstvertrag
- Übersicht über die Rechtsverhältnisse und wichtigsten Ansprüche in der Lieferkette
- Die neue Rechtslage zur Sachmängelhaftung und mögliche Folgen von Produktfehlern

- Strafrechtliche und zivilrechtliche Verantwortung von Managern, Abteilungsleitern und sonstigen Mitarbeitern
- o Stellvertretung / Prokura
- o Grenzen der Vertragsfreiheit
- o AGB-Einbeziehung und -Kontrolle nach neuem Recht
- o Fernabsatzverträge und außerhalb von Geschäftsräumen geschlossene Verträge
- Überblick über das allgemeine Wirtschaftsrecht (Handels- und Gesellschaftsrecht)
- o Grundzüge des Bereicherungs- und Deliktsrechts

Prüfungsarten

Teil der Modulprüfung

Lehr- und Lern-Methoden

Seminaristischer Unterricht und Übung

PowerPoint/Flipchart//Tafel

Empfohlene Literaturliste

Achten Sie immer auf die neueste Auflage!

Lehrbücher:

- 1. Jesgarzewski, Wirtschaftsprivatrecht, 4. Auflage, Springer Gabler.
- 2. Klunzinger, Einführung in das bürgerliche Recht, Vahlen Verlag, 16. Auflage, 2013

- 3. Musielak/Hau, Grundkurs BGB, C.H.Beck Verlag, 13. Auflage, 2013
- 4. Klunzinger, Grundzüge des Handelsrechts, Vahlen Verlag, 14. Auflage, 2011
- 5. Klunzinger, Grundzüge des Gesellschaftsrechts, Vahlen Verlag, 16. Auflage, 2012

Kommentare:

- 1. Palandt, Bürgerliches Gesetzbuch, C.H. Beck Verlag, 73. Auflage, 2014
- 2. Münchner Kommentar zum Bürgerlichen Gesetzbuch, C.H. Beck Verlag, 6. Auflage, Gesamtwerk in 11 Bänden

Datenbanken: Gesetzestexte, Kommentare, Aufsätze

www.beck-online.beck.de

www.gesetze-im-internet.de

Ergänzend:

- 1. Scherer et al., Den Rücken frei:No risk, much fun! Praxiswissen Risikomanagement und Compliancemanagement, rtw medien Verlag, 2007
- 2. Scherer et al., Verträge Praxiswissen Vertragsmanagement, rtw medien Verlag, 2005

W2106 STEUERN

Ziele

Um die Teilnehmer in die Lage zu versetzen, die typischen juristischen Risiken in Unternehmen aufzudecken und konkrete Lösungsvorschläge aufzuzeigen, vermittelt dieses Modul grundlegende Kompetenzen im Bereich des Risiko- und Compliance Managements und sensibilisiert zugleich für Vorgaben, Regelungen und Normen, die Mitarbeiterinnen und Mitarbeiter sowie Unternehmen zu kennen, zu beachten und deren Befolgung sie zu dokumentieren haben.

Mögliche Auswirkungen von Fehlern in diesem Bereich auf das Unternehmen und organisatorische Maßnahmen zur Gegensteuerung und Prophylaxe werden dabei aufgezeigt. Die Studierenden werden dabei nicht zu Juristen mit Einzelfallwissen ausgebildet, sondern primär für die Thematiken sensibilisiert. Darüber hinaus sollen die Studierenden in ihrem späteren Berufsleben frühzeitig erkennen können, ob aktuelle juristische Problemstellungen noch innerbetrieblich zu lösen sind, oder ob Juristen beizuziehen sind.

Ergänzend werden im Teil "Steuern" grundlegende Vorschriften der Unternehmensbesteuerung sowie die steuerrechtlichen Spezifika ausgewählter Rechtsformen dargestellt. Ein Überblick über die Grundzüge des Ertrags- und Umsatzsteuerrechts, sowie über die grundsätzlichen Unterschiede bei der Besteuerung von Personen- und Kapitalgesellschaften komplettieren die Vorlesung.

- Einführung in die Besteuerung
- o (Grundbegriffe, Besteuerungsprinzipien, Einteilung der Steuern)
- Einkommensteuer
- (Grundlagen, persönliche und sachliche Steuerpflicht, von der Summe der sieben Einkunftsarten bis zum versteuernden Einkommen, Ermittlung der Steuerlast)

- Körperschaftsteuer (Grundlagen, persönliche Steuerpflicht, Ermittlung des zu versteuernden Einkommens, die steuerliche Behandlung des Anteilseigners Abgeltungsteuer)
- o Gewerbesteuer / Umsatzsteuer
- o (Bemessungsgrundlage und Höhe der Gewerbesteuer)
- (Grundlagen und Aufbau des UStG, Steuerbare Umsätze, Steuerbefreiungen, Bemessungsgrundlag und Steuersatz, Entstehen der Umsatzsteuer, Vorsteuerabzug, Besteuerung der Kleinunternehmer)
- Steuerstrafrecht / Tax Compliance

Zugangs- bzw. empfohlene Voraussetzungen

W1107 Bilanzierung

Prüfungsarten

Teil der Modulprüfung

Lehr- und Lern-Methoden

Seminaristischer Unterricht mit Übungen

Präsentationen, Folien, Tafel, Skriptum

Empfohlene Literaturliste

Achten Sie immer auf die neueste Auflage!

Grundlegend:

- 1. Huber-Ilg u.a., Steuerlehre, Verlag Europa Lehrmittel, neueste Auflage.
- 2. Hengstebeck, Strukturierte Steuerlehre, Merkur Verlag, neueste Auflage.

Juristisch orientiert / anspruchsvoll:

- 1. Birk/Desens/Tappe, Steuerrecht, C.F. Müller Verlag, 22. Auflage, 2019 /2020.
- 2. Birk/Desens, Klausurenkurs im Steuerrecht, C.F. Müller Verlag, neueste Auflage.
- 3. Streck/Mack/Schwedhelm (Hrsg.), Tax Compliance: Risikominimierung durch Pflichtenbefolgung und Rechteverfolgung, neueste Auflage.

Kommentare:

- 1. Blümich, EStG, KStG, GewStG, Vahlen Verlag, 122. Auflage, 2014
- 2. Bunjes, UStG, C.H., Beck Verlag, 13. Auflage, 2014

Datenbanken: Gesetzestexte, Kommentare, Aufsätze

www.beck-online.beck.de

www.gesetze-im-internet.de

DW-08 PHYSIK 1

Modul Nr.	W-08
Modulverantwortliche/r	Prof. Dr. Florian Flossmann
Kursnummer und Kursname	WZF Physik 1
	W2104 Physik 1
Lehrende	Prof. Dr. Florian Flossmann
Semester	2
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach, Wahlfach
Niveau	Undergraduate
SWS	4 SWS für Vorlesung (zusätzl. 2 SWS für WZF)
ECTS	5
Workload	Präsenzzeit: 60 Stunden (zusätzl. 30 Stunden für WZF)
	Selbststudium: 60 Stunden
	Virtueller Anteil: 30 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Nach dem erfolgreichen Abschluss des Moduls können die Studierenden zu realen physikalischen Vorgängen und Phänomenen aus dem Bereich der Mechanik, der Fluidmechanik, der Schwingungen, Wellen, Thermodynamik und der Strahlenoptik ein idealisiertes mathematisches Modell erstellen und anhand des Modells grundlegende Fragestellungen beantworten.

Insbesondere sind die Studierenden nach Abschluss des Moduls in der Lage,

- die physikalischen Grundlagen der Mechanik, Fluidmechanik, Schwingungen,
 Wellen und Thermodynamik zu verstehen,
- o die Gesetze der linearen Bewegung und der Drehbewegung anzuwenden,
- o die Erhaltungssätze von Energie, linearem Impuls und Drehimpuls zur Lösung von Problemen anzuwenden,
- o die Bewegungsgleichungen für reale Systeme aufzustellen und zu lösen,
- Berechnungen für gegebene Systemparameter anhand der erstellten Modelle durchzuführen,
- o die Unterschiede zwischen Modell und realem System zu benennen,
- den Übergang vom schwingenden Einzelkörper zur Welle im schwingenden Kontinuum zu verstehen,
- die Ausbreitung von Wellen in 1D, 2D und 3D zu erklären und die Auswirkungen des Dopplereffekts zu berechnen,
- die Effekte von Beugung und Interferenz in 1D, 2D und 3D zu erklären und zu berechnen,
- stehende Wellen auf begrenzten Medien als Modell für die Funktionsweise von Musikinstrumenten heranzuziehen,
- o thermodynamische Systeme mittels ihrer Zustandsgrößen zu beschreiben,
- thermodynamische Zustandsänderungen idealer Gase zu erklären und zu berechnen,
- o mit Hilfe der Gesetze der Strahlenoptik (Reflexion und Brechung) den Weg von Lichtstrahlen zu berechnen und zu zeichnen,
- o die Wirkung von brechenden Elementen zu erklären und zu berechnen,
- die Funktionsweise einfacher optischer Geräte zu erklären und ihre Abbildung zu berechnen und konstruieren,

Die Studierenden können nach der Teilnahme an der Veranstaltung ihre erworbenen Kenntnisse bei der Lösung formaler Aufgaben und bei realen Experimenten im Praktikum anwenden.

Zusätzlich sind die Studierenden nach Abschluss des Moduls in der Lage, in Kleingruppen physikalische Probleme in der adäquaten Fachsprache zu diskutieren, sich gegenseitig physikalische Zusammenhänge zu erklären und gemeinsam eine Lösung des Problems zu erarbeiten und zu bewerten.

Verwendbarkeit in diesem und in anderen Studiengängen

Das Modul ist für alle Studiengänge, die ein Grundausbildung in Physik vorsehen, verwendbar.

Zugangs- bzw. empfohlene Voraussetzungen

Schulmathematik

- Einheitensysteme
- Physikalische Größen
- o Kinematik der Massenpunkte (Bewegungen in ein, zwei und drei Dimensionen)
- Dynamik der Massenpunkte (die Newtonschen Axiome, Anwendungen der Newtonschen Axiome)
- o Arbeit, Leistung und Energie, Energieerhaltung
- Teilchensysteme und die Erhaltung des linearen Impulses
- o Drehbewegungen und die Drehimpulserhaltung

- Mechanik der Fluide
- Schwingungen
- o Wellen
- Thermodynamik idealer Gase
- Geometrische Optik

Lehr- und Lernmethoden

Seminaristischer Unterricht mit Demonstrationsexperimenten und zahlreichen Übungsaufgaben mit Lösungen

Besonderes

keine Angabe

Empfohlene Literaturliste

Alle Bücher für Ingenieurphysik, beispielhaft:

- 1. P. Tipler, "Physik für Wissenschaftler und Ingenieure", Spektrum Verlag
- 2. D. Giancoli, "Physik", Pearson Verlag
- 3. F. Kuypers, "Physik für Ingenieure und Naturwissenschaftler, Band 1 & 2", Verlag Wiley-VCH
- 4. D. Halliday, "Physik", Verlag Wiley-VCH
- 5. H. Kuchling, "Taschenbuch der Physik", Hanser Verlag

WZF PHYSIK 1

Prüfungsarten

Teil der Modulprüfung

W2104 PHYSIK 1

- Einheitensysteme
- Teil 1: Mechanik von Massenpunkten (eindimensionale Bewegung, Bewegung in zwei und drei Dimensionen, Newtonsche Axiome, Anwendungen der Newton schen Axiome, Arbeit und Energie, Energieerhaltung, Teilchensysteme und Erhaltung des linearen Impulses, Drehbewegungen, Drehimpulserhaltung, Gravitation)
- Teil 2: Mechanik von starren und deformierbaren K\u00f6rpern (Tr\u00e4gheitsmomente,
 Spannungs- und Verformungszust\u00e4nde, Elastizit\u00e4tskonstanten)
- o Teil 3: Fluide und Gase (Druck, Auftrieb, Grenzflächen, Strömungen, Viskosität)
- Teil 4: Wärmelehre (Temperatur, Wärmeausdehnung, Wärmekapazität, statistische Gastheorie, Phasenübergänge)
- Teil 5: Schwingungen (freie, gedämpfte, erzwungene Schwingung, harmonische Oszillatoren (Pendel), Resonanz, Überlagerung von Schwingungen)
- Teil 6: Wellen (mathematische Beschreibung, Ausbreitung, Überlagerung, stehende Wellen, Beugung, Interferenz, Dopplereffekt)
- Teil 7: Optik (elektromagnet. Wellen, Spektrum, Dispersion, Strahlenoptik (Abbildungen, optische Geräte), Wellenoptik (Beugung, Interferenz, Polarisation, Anwendungen in der Technik)

Prüfungsarten

Teil der Modulprüfung

Lehr- und Lern-Methoden

Seminaristischer Unterricht und Übung

Tafel + Tageslichtprojektor

Empfohlene Literaturliste

- 1. U. Leute, Physik und ihre Anwendungen in Technik und Umwelt, Hanser Fachbuchverlag, 2. Auflage, 2004
- 2. E. Hering, R. Martin, M. Stohrer, Physik für Ingenieure, Springer Verlag, 11. Auflage, 2012
- 3. F. Kuypers, Physik für Ingenieure, Band 1 + 2, Wiley-VCH Verlag, 2. Auflage, 2002
- 4. R. Pitka et al., Physik: Der Grundkurs, Harri Deutsch Verlag, 3. Auflage, 2005
- 5. P. A. Tipler und G. Mosca, Physik für Wissenschaftler und Ingenieure, Elsevier Verlag, München, 2. Auflage, 2006
- 6. D. Mills et al., Arbeitsbuch zu Tipler/Mosca, Elsevier Verlag, München, 2. Auflage, 2005
- 7. H. Kuchling, Taschenbuch der Physik; Hanser Fachbuchverlag, 17. Auflage, 2001

OW-09 PHYSIK 2

Modul Nr.	W-09
Modulverantwortliche/r	Prof. Dr. Florian Flossmann
Kursnummer und Kursname	W3104 Physik 2
	W3105 Praktikum Physik
Lehrende	Prof. Dr. Florian Flossmann
	Prof. Dr. Rudi Marek
	Prof. Dr. Thomas Stirner
Semester	3
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	4
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 40 Stunden
	Virtueller Anteil: 20 Stunden
	Gesamt: 120 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	4/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Kurs Physik 2:

Die Studierenden erwerben ein umfassendes und vertieftes Verständnis der Mechanismen des Wärmetransports und des baulichen Wärme- und Kälteschutzes und können

die am Beispiel Gebäude erlernte universelle Methodik auf andere technische Systeme übertragen. Auf Basis dieser Grundlagen besitzen sie die Fähigkeit zur selbständigen fachgerechten Analyse komplexer technischer Systeme in Bezug auf die auftretenden Massen- und Energieflüsse und die korrekte Beschreibung mit mathematischen Modellen sowie die Plausibilisierung der daraus abgeleiteten Ergebnisse. Das sichere Formulieren und Lösen von Massen- und Energiebilanzen an stationären und instationären Systemen ermöglicht ihnen die fundierte technische und wirtschaftliche Bewertung der Effizienz von Maßnahmen zur industriellen und privaten Energieeinsparung.

Fachkompetenz:

Die Studierenden kennen und verstehen die Grundlagen und Mechanismen des stationären und instationären Wärmetransport und können Massen- und Energiebilanzen aufstellen. Sie sind mit nationalen Regeln des energiesparenden Wärmeschutzes vertraut. Sie lernen typische bauliche Lösungen kennen, wie die im Bereich des Wärmeschutzes von Gebäuden praktisch eingesetzt werden.

Methodenkompetenz:

Die Studierenden können die erworbenen fachlichen Grundlagen sicher und eigenständig auf verschiedene technische Systeme anwenden, um deren Energieflüsse umfassend zu ermitteln und so die Wirtschaftlichkeit von Maßnahmen zur Energieeinsparung zu evaluieren.

Analytische Kompetenz:

Die Studierenden sind in der Lage technische Systeme hinsichtlich des Energieflusses mit geeigneten Modellen strukturiert mathematisch zu beschreiben, primäre Transportmechanismen sicher zu identifizieren und unter Anwendung mathematischer Methoden zu lösen.

Persönliche Kompetenz:

Das vertiefte selbständige Modellieren und Lösen komplexer technischer Fragestellungen fördert die persönliche Kompetenz nachhaltig. Mit der Durchdringung mathematischer Methoden und deren zielgerichtete Anwendung erweitern die Studierenden ihre Fähigkeit zum strukturierten, vernetzten und analytischen Denken.

Soziale Kompetenz:

Auch wenn die Vermittlung sozialer Kompetenzen nicht im Vordergrund des Moduls steht, werden sie dennoch durch das begleitende eLearning im Rahmen von Diskussionen und kritischen Reflexionen im Kursforum sowie durch Teamarbeit im Rahmen des freiwilligen Tutoriums gefördert.

Kurs Praktikum Physik:

Nach dem erfolgreichen Abschluss des Physik-Praktikums können die Studierenden an einfachen Versuchsaufbauten selbstständig Messaufgaben durchführen, die Messungen protokollieren und zusammenfassen. Insbesondere sind sie in der Lage:

- verschiedene Laborinstrumente zu bedienen (Messschieber, Goniometer, Digitalthermometer, Multimeter, einfache Digitaloszilloskope, Labornetzteile, PC-Schnittstellen mit zugehöriger Software),
- die Messgenauigkeit der Instrumente abzuschätzen und die Messergebnisse entsprechend zu interpretieren,
- Messergebnisse an einem physikalischen Modell zu evaluieren und Übereinstimmungen und Abweichung zu diskutieren und zu erklären,
- o Experimente nachvollziehbar zu protokollieren,
- statistische Messfehler zu berechnen und die Verlässlichkeit eines Messergebnisses anzugeben.

Vor allem versetzt das Modul die Studierenden in die Lage, physikalische Experimente selbst zu entwerfen und so grundlegende physikalische Effekte, die aus der Theorie bekannt sind, selbst zu erleben.

Weiterhin sind die Studierenden nach Abschluss des Moduls in der Lage, in Teams einen Arbeitsablauf zu planen, strukturiert und arbeitsteilig durchzuführen und anschließend die Ergebnisse gemeinsam zu diskutieren. Die Teams, die sich im Praktikum bilden, sind in den meisten Fällen anschließend für den Rest des Studiums auch erfolgreiche Lerngruppen.

Verwendbarkeit in diesem und in anderen Studiengängen

Kurs Physik 2:

Das Teilmodul liefert die physikalischen und technischen Grundlagen zur fundierten Bewertung der Wirtschaftlichkeit von Investitionsmaßnahmen im Rahmen des Moduls W-18 Investition und Finanzierung. Für das Modul W-16 Fluid- und Energietechnik erweitert es das Verständnis, wie die dort als reine Rechengrößen ermittelten Energie- und Wärmeströme in technischen Systemen physikalisch übertragen werden. Es trägt somit zur Erweiterung fachübergreifender Kompetenzen bei.

Eine Verwendung in einschlägigen Ingenieurstudiengängen ist im Bereich der Themengebiete Energieeinsparung, Wärmeschutz und Wirtschaftlichkeit möglich.

Zugangs- bzw. empfohlene Voraussetzungen

Mathematik: Lösung nichtlinearer Gleichungen, Differential- und Integralrechnung einer und mehrerer Veränderlicher; Taylor- und Fourier-Reihen; Differentialgleichungen

Inhalt

Kurs Physik 2

- Einführung und Grundbegriffe (Temperatur, Temperaturskalen, Temperaturfelder, Wärme, Wärmestrom, Wärmestromdichte)
- Wärmetransportmechanismen (Leitung, Konvektion, Strahlung) und Transportgesetze
- Allgemeine Fouriersche Wärmeleitungsdifferentialgleichung (Anfangs- und Randbedingungen, Lösungen)
- o Einfache Massen- und Energiebilanzen

- Elektrische Analogie (thermische Widerstände und Leitwerte, Serien- und Parallelschaltung), Wärmedurchgang und Transmission; Wärmedurchgangskoeffizienten (U-Werte) ein- und mehrschichtiger homogener Bauteile; Kontaktwiderstand; Wärmedurchgang in gekrümmten Geometrien
- Normgerechte bauphysikalische Berechnungen: Luftschichten; Wärmedurchgangskoeffizienten inhomogener Bauteile; Wärmedurchgangskoeffizienten von Fenstern und Türen; Wärmebrücken
- Energiesparender Wärmeschutz (Heizperiodenbilanzverfahren, Jahresheizwärme- und Jahresprimärenergiebedarf von Gebäuden; nationale Vorschriften)
- o Wirtschaftlichkeit von Maßnahmen der Energieeinsparung
- Instationäre Wärmeleitung (Normierung, ideal gerührter Behälter, halbunendlicher Körper, exakte Lösung, Näherungslösung für große Zeiten)

Kurs Praktikum Physik:

Versuche zu folgenden Themen (unter anderem, die Liste der Versuchsaufbauten wird ständig erweitert):

- erzwungene lineare Federschwingung
- o Torsionsschwingung und Massenträgheitsmoment
- Linsen und optische Geräte
- o Wellenlängenbestimmung mit dem Gitterspektrometer
- o Brechungsindexmessung mit dem Refraktometer
- o Beugung von Ultraschallwellen
- Zustandsänderungen des idealen Gases
- Wärmeleitfähigkeit und Wärmeausdehnung
- Wheatstone`sche Messbrücke
- Ersatzspannungsquellen

Lehr- und Lernmethoden

Kurs Physik 2

Seminaristischer Unterricht und Lösung praxisrelevanter Fragestellungen im Rahmen von Übungen. Mit dem eingesetzten eElearning erhalten die Studierenden die Möglichkeit. ihre Lösungsansätze sowie die anderer Kursteilnehmer im Kursforum fachlich zu diskutieren. Damit werden zentrale Elemente der Beobachtungs-, Kommunikations- und Fachkompetenz geschult und zielorientiert erweitert.

Kurs Praktikum Physik:

Versuche, die von den Studierenden in Zweiergruppen unter Anleitung eines Betreuers durchgeführt werden. Anfertigung der Versuchsprotokolle im Selbststudium

Besonderes

Kurs Physik 2:

Präsenzveranstaltungen mit blended eLearning, ergänzende freiwillige Tutorien

Empfohlene Literaturliste

Kurs Physik 2:

- Marek R., Nitsche K.: Praxis der Wärmeübertragung, Carl Hanser Verlag, München,
 Auflage, 2019, ISBN 978-3-446-46124-6
- 2. Gebäudeenergiegesetz und bauphysikalische Regelwerke in der jeweils gültigen Fassung

Kurs Praktikum Physik:

Alle Bücher für Ingenieurphysik, beispielhaft:

- 1. P. Tipler, "Physik für Wissenschaftler und Ingenieure", Spektrum Verlag
- 2. D. Giancoli, "Physik", Pearson Verlag
- 3. F. Kuypers, "Physik für Ingenieure und Naturwissenschaftler, Band 1 & 2", Verlag Wiley-VCH
- 4. D. Halliday, "Physik", Verlag Wiley-VCH
- 5. H. Kuchling, "Taschenbuch der Physik", Hanser Verlag

DW-10 WIRTSCHAFTSENGLISCH

Modul Nr.	W-10
Modulverantwortliche/r	Tanja Mertadana
Kursnummer und Kursname	W1108 Wirtschaftsenglisch
Lehrende	Joshua Chandler
	Neal O Donoghue
	Agnes du Plessis
Semester	1
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	2
ECTS	2
Workload	Präsenzzeit: 30 Stunden
	Selbststudium: 30 Stunden
	Gesamt: 60 Stunden
Prüfungsarten	schr. P. 60 Min. + PStA (Endnotenbildung studienbegl.)
Dauer der Modulprüfung	60 Min.
Gewichtung der Note	2/210
Unterrichts-/Lehrsprache	Englisch

Qualifikationsziele des Moduls

Wirtschaftsenglisch für Wirtschaftsingenieure (B2) zielt darauf ab, den Studierenden spezialisierte Sprachkenntnisse zu vermitteln, die für eine selbständige Tätigkeit in einem globalisierten Bereich des Wirtschaftsingenieurwesens notwendig sind. Dabei wird versucht, die Beziehung der Studierenden zur englischen Sprache im kaufmännischen Bereich zu vertiefen, damit sie die Sprache effektiv und effizient als praktisches Kommunikationsmittel einsetzen können.

In diesem Zusammenhang setzt das Modul auf die Vermittlung der vier kardinalen Sprachfertigkeiten (Hören, Lesen, Sprechen und Schreiben) in einem breiten Spektrum von wirtschaftlichen Kernthemen im Bereich des Wirtschaftsingenieurwesens. Dabei gestalten Studierende ihren eigenen Wissenserwerb durch gezielte Bedürfnisanalysen und eigengesteuerte Projekte.

Im Mittelpunkt des Moduls stehen die Optimierung der Sprach- und Kommunikationsfähigkeiten sowie die Entwicklung eines klaren Verständnisses für die Feinheiten der textlichen und dialogbezogenen Bedeutungen. Durch eine Vielzahl von aufgabenbezogenen Sprech-, Hör- und Schreibübungen verbessern die Studierenden ihre aktive und passive Sprachkompetenz und Fähigkeit, klare, prägnante und zusammenhängende Texte zu verfassen - sei es in Form von E-Mails, Berichten oder erklärenden Beschreibungen geschäftlicher Prozesse. Besonderer Wert wird auf die Verbesserung der rhetorischen Kompetenz und Teamfähigkeit der Studierenden gelegt, wobei in jedem Kurs eine Team-Präsentation vorgesehen ist.

Nach Abschluss des Moduls haben die Studierenden die folgenden Lernziele erreicht:

Fachkompetenz

- Die Studierenden beherrschen selbständig die für den Bereich des Wirtschaftsingenieurwesens relevante kaufmännische Fachterminologie. Beherrschung bezieht sich hier auf die mündliche und schriftliche Kommunikation sowie auf das Hör- und Leseverständnis.
- Die Studierenden sind in der Lage, F\u00e4higkeiten wie genaues Lesen und klar strukturiertes Schreiben auf B2 - Niveau einzusetzen.
- Sie haben umfangreiche Kenntnisse über Sprachstile auf B2 Niveau erworben
 sowohl für formale Studienkontexte als auch für semi-formale und formale berufliche Situationen.
- Sie verfügen über grundlegende Erfahrungen in der Präsentation von Themen im Zusammenhang mit Wirtschaftsenglisch.

Methodenkompetenz

Die Studierenden haben gelernt, den Erwerb von Fachterminologie und grammatikalischer Inhalte besser zu strukturieren und geübt, wie man eine neue Sprache verinnerlicht, um einen optimalen Lernnutzen zu erzielen.

Soziale Kompetenz

 Die Studierenden haben wertvolle Erfahrungen im Training anderer persönlicher Kompetenzen wie Teamarbeit, Integrität und Zuverlässigkeit gesammelt.

Verwendbarkeit in diesem und in anderen Studiengängen

Keine Verwendbarkeit in anderen Studiengängen.

Zugangs- bzw. empfohlene Voraussetzungen

Die Mindestanforderung für den Einstieg sind Englischkenntnisse auf B2 - Niveau entsprechend dem Gemeinsamen Europäischen Referenzrahmen für Sprachen (GER).

- o Grundlagen des Geschäftslebens
- o Unternehmensstrukturen
- Märkte und Marktstrukturen
- Unternehmensgründung
- o Produkteinführung
- o Innovation und Technologie in Unternehmen
- Online Geschäfte
- Marketing
- o Kommunikation und Geschäftskorrespondenz
- o Geschäftsbesprechungen und Präsentationen
- o Internationale Geschäftsbeziehungen
- Aktuelle wirtschaftliche Themen

Lehr- und Lernmethoden

Der Fokus der Lehrmethoden liegt auf der Verbesserung der vier Hauptsprachfertigkeiten (Hörverständnis, Sprechen, Lesen und Schreiben) und der Optimierung von beruflichen und sozialen Kompetenzen. Beispiele der angewendeten Lehrmethoden sind diverse Formen der Gruppen- und Einzelarbeit, Minipräsentationen, Übungen zum intensiven Lesen und Hören, Rollen- und Grammatikspiele, Loci-Methode, Laufdiktate, Übersetzungen, Peer-Feedback, Arbeit mit Lernstationen, und verschiedenen Schreibaktivitäten zur Vertiefung des erlernten Stoffes.

Es werden wöchentlich Aufgaben zum Selbststudium gestellt.

Besonderes

Anwesenheitspflicht 75%

Empfohlene Literaturliste

- Black, John, Hashimzade, Nigar & Myles, Gareth. A Dictionary of Economics.
 5th ed. Oxford: OUP, 2017.
- 2. Brook-Hart, Guy. *Business Benchmark*. 2nd ed.: Upper Intermediate. Cambridge: CUP, 2013.
- 3. Butzphal, G., Maier-Fairclough, J. *Career Express. Business English B2*. Berlin: Cornelson, 2015.
- 4. Cotton, D., Falvey, D. & Kent, S. *Market Leader Upper Intermediate*. Harlow:Pearson Longman, 2016.
- 5. Doyle, Charles. A Dictionary of Marketing. 4th ed. Oxford: OUP, 2016.
- 6. Duckworth, M., Turner, R. *Business Results Upper Intermediate*. Oxford: OUP, 2008.

- 7. Emmerson, P. Business Vocabulary Builder. London: Macmillian, 2009.
- 8. Emmerson, P. *Business English Handbook Advanced*. London: Macmillian, 2007.
- 9. Emmerson, P. Business Grammar Builder. Intermediate to Upper-intermediate. London: Macmillian, 2010.
- 10. Foley, M., Hall, D. *MyGrammarLab. Intermediate B1/B2*. Harlow: Pearson, 2012.
- 11. Law, Jonathan. *A Dictionary of Business and Management*. 6th ed. Oxford: OUP, 2016.
- 12. McCarthy, Michael & O`Dell, Felicity. *Academic Vocabulary in Use*. Cambridge: CUP, 2016.
- 13. Murphy, Raymond. English Grammar in Use. Klett Verlag, 2012.
- 14. Rogers, Louis. *Skills for Business Skills*. Upper Intermediate. Oxford: OUP, 2012.
- 15. The Economics Book. London: Dorling Kindersley, 2012.
- 16. The Business Book. London: Dorling Kindersley, 2014.
- 17. Vince, Michael. *Intermediate Language Practice*. 3rd ed. London: Macmillan, 2010.

DW-11 TECHNISCHES ENGLISCH

Modul Nr.	W-11
Modulverantwortliche/r	Tanja Mertadana
Kursnummer und Kursname	W2107 Technisches Englisch
Lehrende	Joshua Chandler
	Jocelyn Flohr
	Tanja Mertadana
Semester	2
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	2
ECTS	2
Workload	Präsenzzeit: 30 Stunden
	Selbststudium: 30 Stunden
	Gesamt: 60 Stunden
Prüfungsarten	schr. P. 60 Min. + PStA (Endnotenbildung studienbegl.)
Dauer der Modulprüfung	60 Min.
Gewichtung der Note	2/210
Unterrichts-/Lehrsprache	Englisch

Qualifikationsziele des Moduls

Technisches Englisch für Wirtschaftsingenieure (B2) zielt darauf ab, den Studierenden spezialisierte Sprachkenntnisse zu vermitteln, die für eine selbständige Tätigkeit in einem globalisierten Bereich des Wirtschaftsingenieurwesens notwendig sind. Dabei wird versucht, die Beziehung der Studierenden zur englischen Sprache im technischen Bereich zu vertiefen, damit sie die Sprache effektiv und effizient als praktisches Kommunikationsmittel einsetzen können.

In diesem Zusammenhang setzt das Modul auf die Vermittlung der vier kardinalen Sprachfertigkeiten (Hören, Lesen, Sprechen und Schreiben) in einem breiten Spektrum von wirtschaftlichen und technischen Kernthemen im Bereich des Wirtschaftsingenieurwesens. Die Studierenden gestalten auch die Lerninhalte durch Bedarfsanalysen und zahlreiche "immersive" und selbstgesteuerte Projekte selbst mit.

Im Mittelpunkt des Moduls stehen die Optimierung der Sprach- und Kommunikationsfähigkeiten sowie die Entwicklung eines klaren Verständnisses für die Feinheiten der textlichen und dialogbezogenen Bedeutungen. Durch eine Vielzahl von aufgabenbezogenen Sprech-, Hör- und Schreibübungen verbessern die Studierenden ihre aktive und passive Sprachkompetenz und Fähigkeit, klare, prägnante und zusammenhängende Texte zu verfassen - sei es in Form von E-Mails, (technischen) Berichten oder erklärenden Beschreibungen technischer Prozesse. Besonderer Wert wird auf die Verbesserung der rhetorischen Kompetenz und Teamfähigkeit der Studierenden gelegt, wobei in jedem Kurs eine Team-Präsentation vorgesehen ist.

Nach Abschluss des Moduls haben die Studierenden die folgenden Lernziele erreicht:

Fachkompetenz

- Die Studierenden beherrschen selbständig die für den Bereich des Wirtschaftsingenieurwesens relevante technische Fachterminologie. Beherrschung bezieht sich hier auf die mündliche und schriftliche Kommunikation sowie auf das Hörund Leseverständnis.
- Die Studierenden sind in der Lage, F\u00e4higkeiten wie genaues Lesen und klar strukturiertes Schreiben auf B2 - Niveau einzusetzen und zwar f\u00fcr Spezialaufgaben im Bereich des Wirtschaftsingenieurwesens.
- Sie haben umfangreiche Kenntnisse über Sprachstile auf B2 Niveau erworben
 sowohl für formale Studienkontexte als auch für semi-formale und formale berufliche Situationen.
- Sie verfügen über grundlegende Erfahrungen in der Präsentation von Themen im Zusammenhang mit Technischem Englisch. Ziel ist es, Spezialwissen in den Manuskripten klar strukturierter, wirkungsvoll gehaltener öffentlicher Reden zu bündeln.

Methodenkompetenz

- Die Studierenden haben gelernt, den Erwerb von Fachterminologie und grammatikalischer Inhalte besser zu strukturieren und geübt, wie man eine neue Sprache verinnerlicht, um einen optimalen Lernnutzen zu erzielen.
- Durch mindestens zwei Forschungsprojekte haben sie ihre praktischen Forschungskompetenzen in englischer Sprache erweitert und verfeinert - zum Beispiel durch die Aufgabe, ein fachspezifisches Thema in einer Einzel- oder Teampräsentation vorzustellen.

Soziale Kompetenz

- Die Studierenden haben wertvolle Erfahrungen im Training anderer persönlicher Kompetenzen wie Teamarbeit, Integrität und Zuverlässigkeit gesammelt.
- Sie haben zudem die Lernergebnisse verschiedener Immersionsprojekte verinnerlicht.

Verwendbarkeit in diesem und in anderen Studiengängen

Keine Verwendbarkeit in anderen Studiengängen.

Zugangs- bzw. empfohlene Voraussetzungen

Die Mindestanforderung für den Einstieg sind Englischkenntnisse auf B2 - Niveau entsprechend dem Gemeinsamen Europäischen Referenzrahmen für Sprachen (GER).

Inhalt

Die Kursinhalte verteilen sich auf eine Reihe von Pflichtthemen, die der Dozent festlegt (60% der Inhalte) und nicht obligatorischer Themen, die die Studierenden auswählen (40% der Inhalte).

Zu den obligatorischen Themen gehören unter anderem die folgenden:

- Mathematische Operationen und Zahlen
- Messungen und Einheiten
- o Geometrische Formen
- o Physikalische Grundlagen (z.B. Kräfte)
- o Materialien und ihre Eigenschaften
- o Fallstudie zu einem Thema im Bereich Technologie/Design/Ingenieurwesen
- o Kommunikationsfähigkeiten (z.B. Präsentationen)
- o Grammatikalische Themen (z.B. passiv vs. aktiv, Zeitformen, Konditionalsätze)

Beispiele für nicht verbindliche Themen sind etwa:

- o Erneuerbare Energien
- o E-Mobilität
- o Grundlagen der Elektrotechnik
- Computing
- Geoinformationssysteme
- Arbeitssicherheit

Lehr- und Lernmethoden

Der Fokus der Lehrmethoden liegt auf der Verbesserung der vier Hauptsprachfertigkeiten (Hörverständnis, Sprechen, Lesen und Schreiben) und der Optimierung von beruflichen und sozialen Kompetenzen. Beispiele der angewendeten Lehrmethoden sind diverse Formen der Gruppen- und Einzelarbeit, Minipräsentationen, Übungen zum intensiven Lesen und Hören, Rollen- und Grammatikspiele, Loci-Methode, Laufdiktate, Übersetzungen, Peer-Feedback, Arbeit mit Lernstationen, und verschiedenen Schreibaktivitäten zur Vertiefung des erlernten Stoffes.

Es werden wöchentlich Aufgaben zum Selbststudium gestellt.

Besonderes

Anwesenheitspflicht 75%

Empfohlene Literaturliste

- Astley, Peter, and Lewis Lansford. Engineering 1: Student's Book. Oxford: Oxford, UP, 2013. Print.
- 2. Bauer, Hans-Jürgen. *English for Technical Purposes.* Berlin: Cornelson, 2000. Print.
- 3. Blockley, David. *Engineering: A Very Short Introduction*. Oxford: OUP, 2012. Print.
- 4. Bonamy, David. *Technical English 4*. Harlow, England: Pearson Education, 2011. Print.
- 5. Bonamy, David, and Christopher Jacques. *Technical English 3.* Harlow: Pearson, Longman, 2011. Print.
- 6. Büchel, Wolfram, et. al. *Englisch-Grundkurs für technische Berufe*. Stuttgart: Klett, 2001. Print.
- 7. Dummett, Paul. *Energy English: For the Gas and Electricity Industries.*Hampshire: Heinle, Cengage Learning, 2010. Print.
- 8. Dunn, Marian, David Howey, and Amanda Ilic. *English for Mechanical Engineering in Higher Education Studies Coursebook*. Reading: Garnet Education, 2010. Print.
- 9. Foley, Mark, and Diane Hall. MyGrammarLab. Harlow: Pearson, 2012. Print.
- 10. Glendinning, Eric H., and Alison Pohl. *Technology 2*. Oxford: Oxford UP, 2008. Print.
- 11. Glendinning, Eric H. and Norman. *Oxford English for Electrical and Mechanical Engineering*. Oxford: OUP, 2001. Print.
- 12. Hollett, Vicki and John Sydes. *Tech Talk: Intermediate.* Oxford: OUP, 2010. Print.

- 13. Ibbotson, Mark. *Cambridge English for Engineering*. Cambridge: Cambridge UP,2008. Print.
- 14. Ibbotson, Mark. *Professional English in Use Engineering Technical English for Professionals.* Cambridge: Cambridge UP, 2009. Print.
- 15. Lansford, Lewis, and Peter Astley. *Engineering 1*. Oxford: Oxford UP, 2013. Print.
- 16. Miodownik, Mark. Stuff Matters. London: Penguin, 2014. Print.
- 17. Möllerke, Georg. *Modern English for Mechanical Engineers*. Munich: Carl Hanser Verlag, 2010. Print.
- 18. Munroe, Randall. What If? London: John Murray, 2015. Print.
- 19. Praglowski-Leary, Klaus-Dieter. *Englisch für technische Berufe*. Stuttgart: Klett, 2004. Print.
- 20. Puderbach, Ulrike, and Michael Giesa. Technical English Mechanical Engineering. Haan-Gruiten: Verl. Europa-Lehrmittel Nourney, Vollmer, 2012. Print.
- 21. Rovelli, Carlo. Seven Brief Lessons on Physics. London: Penguin, 2014. Print.
- 22. The Science Book: Big Ideas Simply Explained. London: DK, 2014. Print.
- 23. Wagner, Georg, and Maureen Lloyd. Zörner. *Technical Grammar and Vo-cabulary: A Practice Book for Foreign Students*. Berlin: Cornelsen, 1998. Print.
- 24. *engine:* Englisch für Ingenieure. <u>www.engine-magazin.de</u> (Darmstadt). Various issues. Print.

OW-12 KONSTRUKTION

Modul Nr.	W-12
Modulverantwortliche/r	DrIng. Christian Vogt
Kursnummer und Kursname	W3101 Konstruktion
Lehrende	DrIng. Christian Vogt
	Norbert Sosnowsky
Semester	3
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	4
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 30 Stunden
	Virtueller Anteil: 30 Stunden
	Gesamt: 120 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	4/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Das Modul vermittelt die Fähigkeit, Maschinenbauteile räumlich zu skizzieren und normgerecht in einer technischen Zeichnung darzustellen sowie die Fähigkeit, Maschinenbauteile nach funktionellen und technisch-wirtschaftlichen Gesichtspunkten auszuführen.

Das Modul soll den Studierenden zudem einen detaillierten Überblick über werkstoffwissenschaftliche Grundlagen der wichtigsten Materialien geben. Dabei werden zunächst Thematiken, wie Kategorien von Werkstoffen, sowie Zustände und Eigenschaften von Werkstoffen näher betrachtet. Anschließend sollen den Studierenden weitere Kenntnisse in der Verarbeitung und der Prüfung vor allem von Kunststoffen vermittelt werden.

Verwendbarkeit in diesem und in anderen Studiengängen

Entsprechende Ingenieurstudiengänge

W-25 Kunststoff- und Fertigungstechnik

Zugangs- bzw. empfohlene Voraussetzungen

W-04 Technische Mechanik

Inhalt

- o Geometrische Grundkonstruktionen
- o Orthogonale Projektion (Dreitafelprojektion)
- o Axonometrische Projektion / Freihandzeichnen
- o Normgerechte Bemaßung
- o Ausarbeiten der Produktionsunterlagen
- o Schraubverbindungen
- o Maß-Toleranzen und Passungen
- o Form- und Lagetoleranzen
- o Oberflächenbeschaffenheit
- o Normzahlen und Normreihen
- o Zeichnungssystematik

Lehr- und Lernmethoden

Seminaristischer Unterricht mit integrierten Konstruktionsübungen, Hausübungen Medienform Tafelanschrieb / Folien: Visualisierung über Beamer

Besonderes

keine Angabe

Empfohlene Literaturliste

- 1. Conrad, K. J.: Grundlagen der Konstruktionslehre, München: Hanser, 1998.
- 2. Hoischen, H.: Technisches Zeichnen, Berlin: Cornelsen, 1998.
- 3. Klein, P.: Einführung in die DIN-Normen, Berlin; Wien; Zürich: Beuth, 2001.
- 4. Labisch S., Wählisch G.: Technisches Zeichnen, Springer Vieweg; 5., überarb. Aufl. 2017 Edition (31. Mai 2017)

DW-13 WERKSTOFFTECHNIK

Modul Nr.	W-13
Modulverantwortliche/r	Prof. Dr. Christine Wünsche
Kursnummer und Kursname	W4101 Werkstofftechnik
Lehrende	Prof. Dr. Christine Wünsche
Semester	4
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 40 Stunden
	Virtueller Anteil: 50 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Nach Abschluss des Moduls kennen die Studierenden die Atommodelle und Bindungsarten.

Ihnen ist die Bedeutung der Elektronenzustände auf Bindungen und Materialeigenschaften bewusst.

Studierende verstehen Grundbegriffe und Kennzahlen der Werkstoffkunde und wenden sie an.

Sie kennen die Unterschiede der Materialgruppen Metalle, Keramiken und Polymere und können diese mit den Bindungsarten korrelieren.

Sie sind in Gesprächen mit Fachleuten in der Lage, Plausibilitätsfragen zu stellen und fachbezogen nach zu fragen

Verwendbarkeit in diesem Studiengang

W-25 Kunststoff- und Fertigungstechnik

Verwendbarkeit in diesem und in anderen Studiengängen

Das Modul erhält allgemeine Prinzipien der Werkstoffkunde für Ingenieure und ist darauf ausgelegt, in entsprechenden Fächern mit identischer ECTS Gewichtung angerechnet zu werden. In den Bereichen Werkstoffwissenschaften werden vertiefte Kenntnisse gefordert werden, in Bereichen mit spezifischer Werkstoffkunde (Polymere, Baustoffe, Metalle, o.Ä.) werden Ergänzungen notwendig werden.,

Zugangs- bzw. empfohlene Voraussetzungen

Keine

Inhalt

- 1. Aufbau der Materie
 - a. Atommodelle
 - b. Bindungsarten
 - c. Thermodynamische Strukturgleichgewichte

- 2. Materialeigenschaften in Bezug auf den Aufbau der Materie
 - a. Mechanische Eigenschaften
 - b. Elektrische Eigenschaften
 - c. Magnetische Eigenschaften
 - d. Thermische Eigenschaften
 - e. Chemische Eigenschaften
 - f. Optische Eigenschaften
- 3. Herstellungsverfahren ausgewählter Werkstoffe

Lehr- und Lernmethoden

seminaristischer Unterricht

Empfohlene Literaturliste

- 1. Rainer Schwab: Werkstoffkunde und Werkstoffprüfung für Dummies; Wiley VCH; 3.Auflage. erweiterte (19. August 2019)
- 2. Rainer Schwab: Übungsbuch Werkstoffkunde und Werkstoffprüfung für Dummies, Wiley VCH, 2. Auflage 5. März 2020
- 3. H.J. Bargel, G. Schulze: Werkstoffkunde; Springer (2018)
- 4. W.D. Callister; D. Rethwisch: Materialwissenschaften und Werkstofftechnik: Wiley-VCH (2012)

○W-14 GRUNDLAGEN DER ELEKTROTECHNIK

Modul Nr.	W-14
Modulverantwortliche/r	Prof. Dr. Peter Firsching
Kursnummer und Kursname	W3102 Grundlagen der Elektrotechnik
Lehrende	Prof. Dr. Peter Firsching
	Prof. Raimund Förg
	Prof. Dr. Josef Kölbl
Semester	3
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 60 Stunden
	Virtueller Anteil: 30 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

- Erlangung von Kenntnis und Verständnis der physikalischen und mathematischen Grundlagen der Elektrotechnik,
- Anwendung einfacher Prinzipien der Meß- und Regelungstechnik auf Probleme der Praxis,

Fähigkeit zur Anwendung der erlernten Kenntnisse auf die spezifischen technischen Probleme.

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbar für andere Ing.-wissenschaftliche Studiengänge, auch für Mess- und Regelungstechnik

Zugangs- bzw. empfohlene Voraussetzungen

Zugangsvoraussetzungen: keine

empfohlene Voraussetzungen:

physikalische und mathematische Grundkenntnisse auf dem Niveau der gymnasialen Oberstufe.

Inhalt

- 1. Grundlagen der Elektrotechnik
- 2. Elektrische Grundgrößen
 - a. Elektrische Ladungen und Stromkreis
 - b. Stromdichte
 - c. Stromarten
 - d. Die elektrische Spannung
 - e. Das Ohmsche Gesetz
 - f. Arbeit und Leistung

3. Der Gleichstromkreis

- a. Passive Zweipole
- b. Aktive Zweipole
- c. Ideale Quellen
- d. Reale lineare Quellen
- e. Bestimmung des Arbeitspunkts
- f. Leistungsanpassung

4. Berechnung von Gleichstromkreisen

- a. Die KIRCHHOFFschen Gesetze
- b. Reihen- und Parallelschaltung von Widerständen
- c. Spannungs- und Strommessung
- d. Netzwerke mit einer Quelle
- e. Überlagerungssatz
- f. Ersatzquellen
- g. Stern-/Dreieck-Umwandlung
- h. Grundbegriffe der Wechselstromtechnik
- i. Periodische Zeitfunktionen
- j. Sinus-Größen
- k. Komplexe Wechselstromrechnung
- I. Betrieb idealer passiver Zweipole mit Sinusgrößen
- m. Sinusstromnetzwerke

Lehr- und Lernmethoden

Seminaristischer Unterricht und Übung

Skript, Tafelanschrieb

Besonderes

keine Angabe

Empfohlene Literaturliste

- 1. Frohne, Löcherer, Müller: Moeller, Grundlagen der Elektrotechnik. Teubner-Verlag, 19. Auflage
- 2. Bernstein H.: Elektrotechnik / Elektronik für Maschinenbauer, Grundlagen und Anwendungen. Vieweg-Verlag, 2004
- 3. Merz H.: Elektrische Maschinen und Antriebe. VDE-Verlag, 2001

OW-15 MESS- UND REGELUNGSTECHNIK

Modul Nr.	W-15
Modulverantwortliche/r	Prof. Dr. Peter Firsching
Kursnummer und Kursname	W4102 Mess- und Regelungstechnik
Lehrende	Prof. Dr. Peter Firsching
	Prof. Dr. Jochen Hiller
Semester	4
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 60 Stunden
	Virtueller Anteil: 30 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

- Erlangung von Kenntnis und Verständnis der physikalischen und mathematischen Grundlagen der Elektrotechnik.
- Anwendung einfacher Prinzipien der Mess- und Regelungstechnik auf Probleme der Praxis.

Fähigkeit zur Anwendung der erlernten Kenntnisse auf die spezifischen technischen Probleme.

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbarkeit ist nicht gleich Anrechenbarkeit!

Ingenieurstudiengänge

Zugangs- bzw. empfohlene Voraussetzungen

Zugangsvoraussetzungen: keine

empfohlene Voraussetzungen: physikalische und mathematische Grundkenntnisse auf dem Niveau der gymnasialen Oberstufe

Inhalt

Messtechnik:

o Messen: Messgrößen, Einheitensystem

o Messsignale: Klassifizierung und Wandlung,

Charakterisierung

- o Messmethoden: Ausschlag, Differenzmethode, Kompensation
- o Messeinrichtung: Grundstruktur, statische und dynamische Kenngrößen
- o Bewertung von Messergebnissen: Abweichungen, Fehlerfortpflanzung von systematischen und zufälligen Abweichungen; Fehlertypen
- Messung elektrischer Größen: Strom, Spannung, Leistung, Widerstände,
 Kondensator, Spule, Zeit, Frequenz

- Messung nichtelektrischer Größen: Messkette, Sensoren zur Geometrie-,
 Kraft-, Schwingungs-, Temperatur und Durchflussmessung; Koordinatenmesstechnik
- o Automatisierte Messsysteme

Regelungstechnik:

- o Beispiele geregelter Systeme, Modellierung
- o Regelkreis und Regelkreisgrößen
- o DGLen, System von DGL 1. Ordnung, Zeitbereich
- o Laplace-Transformation
- o Standardübertragungsglieder
- o Bode- und Nyquist-Diagramm
- o Stabilität nach Hurwitz
- o Verhalten linearer kontinuierlicher Regelsysteme

Lehr- und Lernmethoden

Vorlesung mit Übungen

Besonderes

keine Angabe

Empfohlene Literaturliste

- 1. Parthier, R.: Messtechnik, Vieweg-Verlag;
- 2. Unbehauen, H.: Regelungstechnik I, Vieweg-Verlag

○W-16 FLUID- UND ENERGIETECHNIK

Modul Nr.	W-16
Modulverantwortliche/r	Prof. Dr. Robert Mnich
Kursnummer und Kursname	WZF Fluid- und Energietechnik
	W3103 Fluid- und Energietechnik
Lehrende	Prof. Dr. Klaus Nitsche
Semester	3
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach, Wahlfach
Niveau	Undergraduate
SWS	4 SWS für Vorlesung (zusätzl. 2 SWS für WZF)
ECTS	5
Workload	Präsenzzeit: 60 Stunden (zusätzl. 30 Stunden für WZF)
	Selbststudium: 30 Stunden
	Virtueller Anteil: 60 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

 Die Studierenden kennen Grundgesetze der Strömungsmechanik und der Thermodynamik und damit gewinnen ein Verständnis für die in Maschinen, Anlagen und in der Natur ablaufenden Transportvorgänge von Masse, Impuls und Energie.

- Die Studierenden sind in der Lage technische Anlagen als abstrahierte Systeme zu modellieren und an den entsprechenden Systemgrenzen Masse, Energie zu bilanzieren.
- Die Studierenden lernen basierend auf praxisnahen Problemstellungen, wie diverse technische Problemstellungen methodisch und analytische zu lösen sind.

Verwendbarkeit in diesem und in anderen Studiengängen

Das Modul liefert fundierte Grundlagen für andere Fächer, deren Energie der Hauptgegenstand ist, z.B. Regenerative Energietechnik.

Zugangs- bzw. empfohlene Voraussetzungen

Funktionen mehrerer Veränderlicher, Differenzial- und Integralrechnung

Inhalt

- o Ideales, reales, Stoffverhalten
- o Massen- und Energiebilanz
- o Hauptsätze der Thermodynamik
- o Kreisprozesse und thermische Maschinen
- Hydrostatik
- o Bernoulli-Gleichung
- o Stationäre Rohrströmung mit Druckverlust
- o Impulssatz

Lehr- und Lernmethoden

Seminaristischer Unterricht mit integrierter Übung,

Hausübungen

Empfohlene Literaturliste

- 1. Langeheinecke, Klaus, et al., "Themodynamik für Ingenieure", Springer & Vieweg-Verlag, 2017, ISBN 978-3-658-14301-5
- 2. Bschorer, Sabine, "Technische Strömungslehre", Springe r& Vieweg-Verlag, 2018, ISBN 978-3-658-20037-4

W-17 REGENERATIVE ENERGIEN UND STOFFTECH-NIK

Modul Nr.	W-17
Modulverantwortliche/r	Prof. Dr. Raimund Brotsack
Kursnummer und Kursname	W4103 Regenerative Energien und Stofftechnik
Lehrende	Prof. Dr. Rui Li
Semester	4
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	undergraduate
SWS	4
ECTS	4
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 30 Stunden
	Virtueller Anteil: 30 Stunden
	Gesamt: 120 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	4/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden des Modules gewinnen einen Einblick, die Nutzung regenerativer Energien ist ein wichtiger Teil von der Bundesregierung forcierten Energiewende bei der Bekämpfung des Treibhauseffekts und anderer negativer Auswirkungen der heutigen Energieversorgung.

Die Studierenden verstehen die physikalischen und technischen Grundlagen beim Aufbau und Betrieb von wichtigen erneuerbaren Energiesystemen. Der Schwerpunkt liegt dabei auf Technologien mit einem großen Entwicklungspotenzial wie Solarthermie, Photovoltaik, Windenergie, Geothermie und Bioenergie. Dazu erarbeiten sich die Studierenden darauf aufbauende Fähigkeiten im Umgang mit verschieden Quellen wissenschaftlichen Wissens. Die Studierenden kennen und verstehen die Quellen, die zur Gewinnung von erneuerbaren Energien genutzt werden können. Ein Hauptaugenmerk liegt dabei darauf die physikalischen Grundlagen zum Verständnis der Hautquelle Sonnenenergie zu verstehen. In der Vorlesung sind alle Energietechnologien zusammengefasst, die aus regenerativen Rohstoffen oder Quellen gewonnen werden. Darüber hinaus ist es Ziel der Vorlesung bei den Studierenden ein Verständnis für das Zusammenspiel der verschiedenen Energietechnologien zum Umbau der Energiesysteme von fossil auf regenerativ kennen zu lernen.

Nach Absolvieren des Moduls Regenerative Energien und Stofftechnik haben die Studierenden folgende Lernziele erreicht:

Fachkompetenz:

Die Studierenden kennen und verstehen die aktuellen Technologien und Entwicklungen im Bereich der Regenerativen Energiesysteme im Kontext von Netzausbau, virtuellen Kraftwerkskonzepten und Speichertechnologien sowie dem weiteren Zubau Regenerativer Energien und können diese kritisch bewerten. Die Studierenden

- sind vertraut mit den drei Säulen der Nachhaltigkeit und dem anthropogenen Treibhauseffekt,
- kennen die ökologische Bewertung sowie das Konzept "Cradle to Cradle",
- o verstehen die Entstehung der Sonnenenergie und berechnen die Solarkonstante,
- erläutern die nicht-konzentrierende und konzentrierende Solarthermie mit Beispielen,
- analysieren die Windentstehung, beurteilen die Häufigkeitsverteilung von Windgeschwindigkeit und Leistungskennlinie,
- klassifizieren Festkörper zu Nichtleiter, Halbleiter und Leiter, zeichnen das Prinzip der Solarzelle,

- o beschreiben die Nutzung der Erdwärme,
- beschreiben die verschiedenen Formen der Bioenergie und sind in der Lage dazu die verschiedenen Umwandlungen einzuordnen,

kennen die Methoden des Speicherns von Energie für verschiedene erneuerbare Energieträger.

Methodenkompetenz

Die Studierenden

- beherrschen grundlegende Funktionen der verschiedenen erneuerbaren Energieträger und können die praktische Entwicklung nachvollziehen,
- sind in der Lage, methodisch, wissenschaftlich, kritisch und wissensbasiert regenerative Energiesysteme zu verstehen, zu rezipieren und evaluieren,
- kennen die Herausforderungen der regenerativen Energien und k\u00f6nnen Ma\u00dBnahmen zum effizienten Umbau der Energiesysteme bewerten, anwenden und begr\u00fcnden.

Personale- soziale Kompetenz

Die Studierenden

- sind in der Lage ihre Argumente bei Kommunikationssituationen im Bereich der Energietechnik nachvollziehbar zum Ausdruck zu bringen und mit anderen fachkompetent zu diskutieren,
- reflektieren die nachhaltigen Gedanken für ihr Fachgebiet sowie für ihr Verständnis von Wissenschaft.

Verwendbarkeit in diesem und in anderen Studiengängen

Bachelor Maschinenbau (Fac. MB-MK; D7106)

Bachelor Umweltingenieurwesen (Fac. BIW; Y-09)

Zugangs- bzw. empfohlene Voraussetzungen

Keine

Inhalt

- 1. Einleitung
 - a. Drei Säulen der Nachhaltigkeit: sozial, ökologisch, ökonomisch
 - b. Treibhauseffekt, Treibhaugase
- 2. Bewertung
 - a. Ökologische Bewertung bzw. Ökobilanz
 - b. Lebensweganalyse (Life Cycle Assessment)
- 3. Sonnenenergie
 - a. Bestandenteile der Sonne, Entstehung der Sonnenergie
 - b. Fusionsreaktor, Solarkonstante, Emissionsspektrum der Sonne
- 4. Nicht-konzentrierende Solarthermie
 - a. Flachkollektor und Vakuumröhrenkollektor
 - b. Optische und thermische Vorgänge
- 5. Konzentrierende Solarthermie
 - a. Parabolrinnen-Kraftwerk (Dampfturbinenpozess)
 - b. Turm-Solarkraftwerk mit Salzschmelze
- 6. Windenergie
 - a. Windentstehung über globale und lokale Windssysteme
 - b. Leistungskennlinie einer Windkraftanlage, Leistungsberechnung

7. Photovoltaik

- a. Eigenleitung und Störstellenleitung durch Dotierung
- b. Prinzip Solarzelle im Energiebändermodel

8. Geothermie

- a. Nutzung der Geothermie: Flächenkollektoren, Erdwärmesonden, tiefe Geothermie für Strom
- b. Geothermische Kraftwerke mit Binär-Kreislauf

9. Bioenergie

- a. Nachwachsende Rohstoffe
- b. Thermochemische Umwandlung (Pyrolyse, Versagung, Verbrennung)

10. Energiespeicher

- a. Warum brauchen wir Energiespeicher für erneuerbare Energie
- b. Pumpspeicherkraftwerk usw.

Lehr- und Lernmethoden

Skriptum, Präsentationen, Folien auf iLearn, und Übung

Besonderes

Keine

Empfohlene Literaturliste

1. Volker Quaschning: "Regenerative Energiesysteme, 6. Neubearbeitete Auflage; Hanser Verlag; München; 2009

- 2. Martin Kaltschmitt, Wolfgang Streicher, Andreas Wiese (Hrsg.); "Erneuerbare Energien, 4.Auflage; Springer Verlag; Berlin-Heidelberg; 2006
- 3. Martin Kaltschmitt, Wolfgang Streicher, Andreas Wiese (Hrsg.); "Energie aus Biomasse; Grundlagen, Techniken und Verfahren; 2. Auflage; Springer Verlag; Berlin-Heidelberg; 2009
- 4. Godfrey Boyle; Renewable energy: power for a sustainable future Oxford University Press; 3rd. Edition (13. September 2012)
- 5. Sterner, M., Stadler, I.; Energiespeicher Bedarf, Technologien, Integration; Springer Verlag Berlin Heidelberg, 2014;
- 6. Türk, O.; Stoffliche Nutzung nachwachsender Rohstoffe: Grundlagen Werkstoffe Anwendungen; Springer Fachmedien, Wiesbaden, 2014
- 7. Diepenbrock, W.; Nachwachsende Rohstoffe; Verlag Eugen Ulmer KG; Stuttgart, 2014, Quaschnig V.: Regenerative Energie-systeme, 9. Auflage; Hanser Verlag München; 8.2015
- 8. Wesselak, V.; Schabbach, T., et al.; Regenerative Energietechnik; Springer Verlag, Berlin Heidelberg, 2te Auflage 2013

OW-18 INVESTITION UND FINANZIERUNG

Modul Nr.	W-18
Modulverantwortliche/r	Prof. Dr. Jutta Stirner
Kursnummer und Kursname	W3106 Finanzierung
	W3107 Investitionsrechnung und technisches Con-
	trolling
Lehrende	Dr. Alois Bauer
	Gerhard Brauch-Widmann
	Prof. Dr. Jutta Stirner
Semester	3
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	8
ECTS	10
Workload	Präsenzzeit: 120 Stunden
	Selbststudium: 120 Stunden
	Virtueller Anteil: 60 Stunden
	Gesamt: 300 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	10/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Fachkompetenz:

Aufbauend auf den betriebswirtschaftlichen Grundlagen werden im Modul Investition und Finanzierung die Grundsätze der Unternehmensführung aus Sicht des Controllings diskutiert. Die hierbei auftretenden Prozesse und Abhängigkeiten sollen für den Studenten erkennbar und verständlich werden. Die benötigten Werkzeuge zu Finanzierung, Investition und deren Controlling sollen in Ihrer Wirkungsweise und ihrem Einsatz vermittelt werden.

Im Teil "Investition und Controlling" erlernen die Studierenden schwerpunktmäßig die Anwendung der Investitionsrechnung sowie des Betriebsabrechnungsbogens.

Im Teil Finanzierung erlernen die Studierenden, erste Anzeichen der Insolvenztatbestände im Zahlenwerk des Unternehmens zu erkennen und zu verstehen, welche Maßnahmen zu treffen sind. Hierfür können die Studierenden mit den verschiedenen Arten der Eigen- und Fremdfinanzierung umgehen.

Methodenkompetenz:

Die letztlich jeder betriebswirtschaftlichen Entscheidung zugrundeliegenden mathematischen und juristischen Methoden werden nach 3 Semestern Übung in aufeinander aufbauenden betriebswirtschaftlichen Grundlagenvorlesungen sicher angewandt.

Sozialkompetenz:

Die Kenntnis der rechtlichen Grundlagen der Wirtschaftstätigkeit ist Basis rechtskonformen Verhaltens, wobei die rechtlichen und finanziellen Folgen von Abweichungen verstanden werden.

Verwendbarkeit in diesem Studiengang

W-22 Unternehmensnachfolge und Business Simulation

W-30 Unternehmensführung

Verwendbarkeit in anderen Studiengängen

W-22 Unternehmensnachfolge und Business Simulation

W-30 Unternehmensführung

Zugangs- bzw. empfohlene Voraussetzungen

Besuch der Vorlesungen aus Modul W-07 Wirtschaftsrecht sowie W-06 Unternehmerische Grundlagen

Inhalt

- Finanzwirtschaftliche Grundbegriffe, Ziele und Instrumente. Liquidität, Kapitalbedarf, finanzielles Gleichgewicht, Organisation der betr. Finanzwirtschaft, Zahlungsverkehr, Instrumente der finanzwirtschaftlichen Führung (Finanzkennzahlen, -plan, -kontrollen)
- o Insolvenztatbestände, -verfahren
- o Grundzüge der Finanzplanung, Bilanzanalyse, Finanzanalyse, Finanzierungsregeln
- Kenntnis der Kapitalformen und Kapitalquellen
- Finanzierungsarten (insbesondere Absatz- und Investitionsfinanzierung), finanzwirtschaftlich relevante Märkte, Finanzierungsersatz (Leasing, Factoring), Kreditgespräch, Bonitätsprüfung, Kreditsicherung
- o Eigenkapital, Dividendenpolitik, Kapitalerhöhung
- Grundzüge der Unternehmensbewertung
- Moderne Unternehmen müssen betriebswirtschaftliche Entscheidungen schnell, effizient und nachvollziehbar herbeiführen können, um im Wettbewerb zu bestehen.

- Investition steht in einem engen Zusammenhang mit dem Thema Finanzierung.
 Dieses Modul bietet Entscheidungshilfen für Fälle, in denen mehrere Investitionsalternativen zur Auswahl stehen.
- Die Vertrautheit mit den Methoden der Investitionsrechnung als Teilbereich des betrieblichen Rechnungswesens und eines betrieblichen Informations- und Controlling-Systems ist Voraussetzung um als Wirtschaftsingenieur erfolgreich mitwirken zu können.
- o Die Grundlagen der Kostenrechnung werden vermittelt bzw. aus dem Modul BWI wiederholt.
- Es werden die statischen und die dynamischen Verfahren der Investitionslehre gelehrt.
- o Das Problem der Differenzinvestitionen wird behandelt.
- Kennzahlensysteme bei der Auswertung der Bilanz und der GuV sind wesentliche Inhalte des Controllings.
- Das Kostenrechnungssystem wird als Schlüssel für ein erfolgreiches Controlling vertieft vermittelt.

Lehr- und Lernmethoden

Seminaristischer Unterricht, Fallstudien

Empfohlene Literaturliste

Grundlegend:

- Perridon/Steiner/Rathgeber, Finanzwirtschaft der Unternehmung, Vahlen, überarbeitete und erweiterte Auflage 2017
- 2. Drukarczyk, Finanzierung, UTB, 13. Auflage 2019

- 3. Mandl/Rabel, Unternehmensbewertung, Ueberreuter Verlag, ISBN-10: 3706401630
- 4. Olfert, Finanzierung, Kiehl Verlag, 17. Auflage 2017

Ergänzend:

- 1. Schmidt/Terberger, Grundzüge der Investitions- und Finanzierungstheorie, Gabler, 4. Auflage 1997
- 2. Brealey/Myers/Allen, Principles of Corporate Finance, McGraw Hill, 13th edition 2019
- 3. Bisani, in: Basel II, Auswirkungen auf die Finanzierung, Übelhör/Warns (Hrsg.), PD-Verlag, 2004

W-19 ALLGEMEINWISSENSCHAFTLICHES WAHL-PFLICHTFACH

Modul Nr.	W-19
Modulverantwortliche/r	Tanja Mertadana
Kursnummer und Kursname	W5105 Allgemeinwissenschaftliches Wahlpflichtfach
Semester	5
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	2
ECTS	2
Workload	Präsenzzeit: 30 Stunden
	Selbststudium: 30 Stunden
	Gesamt: 60 Stunden
Prüfungsarten	PStA oder mdl. P. 15 Min. oder schr. P. 90 Min. (nä-
	heres regelt Studienplan)
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	2/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Durch das AWP-Modul erwerben Studierende Kenntnisse und Fertigkeiten in Themenbereichen, die über den gewählten Studiengang hinausgehen.

Studierende können sowohl Präsenzkurse als auch Kurse der virtuellen Hochschule Bayern (VHB) auswählen. Die Studierenden können in folgenden Bereichen Kenntnisse und Fähigkeiten erwerben:

o in einer oder mehreren Fremdsprachen (Sprachkompetenz)

- o im didaktisch-pädagogischen Bereich (Methodenkompetenz)
- o im gesellschaftswissenschaftlichen Bereich (Sozialkompetenz)
- o im psychologisch-soziologischen Bereich (Sozialkompetenz)
- o im technisch-naturwissenschaftlichen Bereich (Fachkompetenz)
- o im philosophisch-sozialethischen Bereich (Persönliche Kompetenz)
- o im betriebswirtschaftlichen Bereich

Die Studierenden können innerhalb des Wahlpflichtangebotes ihre Kurse selbst auswählen und so neigungsorientiert die Kenntnisse vertiefen.

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbarkeit des Moduls für andere Studiengänge ist gewährleistet.

Zugangs- bzw. empfohlene Voraussetzungen

Für weiterführende Sprachkurse muss die geforderte Sprachkompetenzvorliegen (durch z.B. erfolgreiche Belegung eines unteren Niveaus).

Allgemeinwissenschaftliche Wahlpflichtfächer dürfen keine inhaltlichen Überschneidungen mit dem eigenen Studiengang haben.

Inhalt

Die konkreten Inhalte können der entsprechenden Kursbeschreibung entnommen werden.

Siehe entsprechendes aktuelles Angebot der AWP-Fächer und Pflichtsprachen der einzelnen Studiengänge von der Homepage:

https://www.th-deg.de/de/studierende/awp-sprachen

Lehr- und Lernmethoden

Seminaristischer Unterricht, Übung

Besonderes

Kursspezifische Besonderheiten können der entsprechenden Kursbeschreibung entnommen werden.

Empfohlene Literaturliste

Literaturempfehlungen können der entsprechenden Kursbeschreibung entnommen werden.

W-20 FACHWISSENSCHAFTLICHES WAHLPFLICHT-FACH

Modul Nr.	W-20
Modulverantwortliche/r	Prof. Dr. Oliver Neumann
	Allgemein
	W4104 FWP - Projektmanagement
	W4104 FWP - Wissenschaftliches Arbeiten
	W4104 FWP - Interkulturelles Management
	W4104 FWP - Montagetechnik und Fabrikplanung
Lehrende	Prof. Dr. Andrey Prihodovsky
	Prof. Dr. Oliver Neumann
	Carina Forman
	Gerhard Brauch-Widmann
	Virtuelles Angebot vhb
Semester	4
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	FWP, Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	4
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 30 Stunden
	Virtueller Anteil: 30 Stunden
	Gesamt: 120 Stunden
Prüfungsarten	Endnotenbildende PStA oder mdl. P. 15 Min. oder
	schr. P. 90 Min. (näheres regelt Studienplan)
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	4/210

Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Durch das FWP Modul sind Studierende in der Lage, Kenntnisse und Fähigkeiten zu erwerben, welche diejenigen des Studiengangs ergänzen und vertiefen. Nach Absolvieren wurden folgende Lernziele erreicht:

- o die Studierenden haben Einblick in die Methoden, Denkweisen und Praktiken ausgewählter ingenieurwissenschaftlicher, wirtschaftswissenschaftlicher oder internationaler Themen. Sie beurteilen entsprechende Themenstellungen und Anwendungen oder erweitern ihre interkulturellen und sozialen Kompetenzen.
- o Erwerb fachübergreifender Kompetenzen
- o Erwerb von Schlüsselqualifikationen
- Einblick in die Themen, Methoden und Denkweisen aktueller angrenzender
 Fach- bzw. Spezialgebiete
- Fähigkeit zur Beurteilung interdisziplinärer Themenstellungen und Anwendungen

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbarkeit des Moduls für diesen und andere Studiengänge ist gewährleistet.

Zugangs- bzw. empfohlene Voraussetzungen

Die Teilnehmerzahl ist begrenzt (i.d.R. 20 bei nichtsprachl. Kursen). Für gewählte weiterführende Kurse muss die geforderte Kompetenz von vorherigen Semester vorliegen. Für nähere Information wenden Sie sich bitte an den zuständigen Lehrenden.

Inhalt

Die Studierenden können innerhalb des Wahlpflichtangebots, bzw. des entsprechenden Angebots anderen Fakultäten (in diesem Fall bitte vorher mit Prüfungskommission abstimmen) ihre Kurse selbst auswählen und so neigungsorientiert die Kenntnisse vertiefen.

Die konkreten Inhalte können der entsprechenden Kursbeschreibung entnommen werden:

- Einblick in die Themen, Methoden und Denkweisen studiengangsspezifischer Fachgebiete
- Einblick in aktuelle Problemstellungen und Entwicklungen studiengangsspezifischer Fachgebiete

Lehr- und Lernmethoden

Seminaristischer Unterricht oder Projektarbeit, E-Learning, Vorlesung mit integrierten Übungsbeispielen, Hausübungen,

Tafelanschrieb in Kombination mit Skriptum.

Besonderes

keine Angabe

Empfohlene Literaturliste

wird in der Vorlesung bekannt gegeben

W4104 FWP - PROJEKTMANAGEMENT

Ziele

Als Querschnittsdisziplin ist Projektmanagement in nahezu allen Unternehmen aus allen Industrien fest verankert, sei es in Bezug auf Produktentwicklungs-, Software-, Industrialisierungs-, Veränderungs- und Implementierungsprojekte oder auch Bau- und Strukturprojekte.

Im Rahmen der Vorlesung werden die zentralen Wissensgebiete und Prozesse von Projektmanagement genau analysiert. Dabei wird insbesondere ein Augenmerk daraufgelegt, welche Faktoren Projekte in Unternehmen zum Erfolg machen. Es werden sowohl Methoden des klassischen wie auch des agilen und hybriden Projektmanagement praxisorientiert vermittelt.

Die Inhalte werden mit Hilfe von Fallstudien, die die Studierenden in Kleingruppen bearbeiten und präsentieren, vertieft. Es wird die Software JIRA, die sich mittlerweile als Standard in der Praxis etabliert hat, genutzt.

Das Ziel der Vorlesung ist, dass Studierende notwendiges Wissen und erste Erfahrungen haben, um sofort aktiv in Projekten arbeiten zu können.

Am Ende der Vorlesung sind die Studierenden insbesondere in der Lage

- a. die gängigsten Methoden des klassischen und agilen Projektmanagements anzuwenden und hinsichtlich ihrer Eignung für unterschiedliche Projekte zu evaluieren und
- b. fundierte Entscheidungen hinsichtlich der Projektziele zu treffen.

Inhalt

- 1) Grundlagen zu Projekten und Projektorganisation
- 2) Klassisches, agiles und hybrides Projektmanagement
- 3) Projektinitiierung
- 4) Projektplanung
- 5) Projektdurchführung
- 6) Projektkontrolle
- 7) Projektabschluss

8) Projektportfolio- und Multiprojektmanagement

Prüfungsarten

schr. P. 90 Min.

Lehr- und Lern-Methoden

Vortrag, seminaristischer Unterricht, Gruppenarbeit, Selbstlernphasen

Empfohlene Literaturliste

Folgende Liste stellt eine Auswahl dar – weitere Literaturempfehlungen werden über iLearn/ das Dozentenskript bekannt gegeben:

- 1. Bea, F.-X., Scheurer, S. und Hesselmann, S. (2020): Projektmanagement, 3. Aufl., Tübingen 2020
- 2. Kerzner, H. (2017): Project Management: a systems approach to planning, scheduling, and controlling, New Jersey 2017
- Kuster, J. et al. (2019): Handbuch Projektmanagement: agil klassisch hybrid,
 Aufl., Berlin 2019
- 4. Meredith, J, Mantel, S. und Shafer, S. (2018): Project Management: a managerial approach, Hoboken 2018
- 5. Patzak, G. und Rattay, G. (2018): Projektmanagement: Projekte, Projektportfolios, Programme und projektorientierte Unternehmen, 7. Aufl., Wien 2018
- 6. Timinger, H. (2017): Modernes Projektmanagement, Weinheim 2017

Prüfungsarten

schr. P. 90 Min

W4104 FWP - MONTAGETECHNIK UND FABRIK-PLANUNG

Ziele

Durch Reduzierung der Wertschöpfungstiefe und durch weiter zunehmende Internationalisierung entstanden in den letzten zwei Jahrzehnten komplexere Produktionsnetzwerke die heute mit den Themen aus der Industrie4.0 diskutiert werden. Die Produktionsnetzwerke müssen sich flexibel der zunehmend stärker schwankenden Nachfrage und den geographischen Nachfrageverschiebungen anpassen.

Ziel ist es, kreative Problemlöser auszubilden, die sowohl traditionelle Maschinenbauaufgaben als auch Prozessoptimierungen

- innerhalb eines Werkes,
- eines Produktionsverbundes mit mehreren Standorten und / oder
- der Supply-Chain zu den Zulieferern

übernehmen können. Es werden fundierte Kenntnisse für die Planung und Optimierung von Industriebetrieben und insbesondere deren Produktionsbereichen vermittelt, z.B. in den Aufgabenfeldern Arbeitsplanung, Arbeitsvorbereitung, Einkauf, interne und externe Logistik. Schwerpunkte liegen in der Gestaltung von Fabriken und Montageeinheiten und Zusammenhänge mit Industrie 4.0.

Inhalt

Grundlage des Erfolgs bei der Planung und Realisierung von Fabrikprojekten ist eine planvolle und durchgängig systematische Vorgehensweise. Mit der Zielsetzung

- Erkennen und Beherrschen der grundlegenden Systematik des Fabrikplanungsprozesses.
- o Erlernen der wesentlichen Werkzeuge zur Fabrikplanung und ihren Einsatz.
- Vermitteln der Fähigkeit, Aufgaben innerhalb der Thematik Fabrikplanung selbständig zu lösen bzw. die für eine Entscheidungsfindung notwendigen Voraussetzungen zu erarbeiten

werden die Themen Systematische Vorgehensweise bei der Fabrikplanung von der Vorplanung über die Phasen der Grobplanung Dimensionierung, Strukturierung zur Feinplanung und Ausführungsplanung besprochen. Weitere Aspekte innerhalb des Fabrikplanungsprozesses zu z.B. Standortplanung, Fertigungsstrukturierung, Simulation und Supply Chain Management werden diskutiert. Ein begleitendes Beispiel wird ausgeführt.

- o In der Montage wird am Ende des Produktionsprozesses das Produkt unter den Randbedingungen Preis, Termin und Qualität fertiggestellt. Die aufeinander aufbauenden Ebenen Produkt/Prozess, Systemtechnik und Anlage sowie Organisation einer Montage werden dargestellt. Aspekte zur montagegerechten Produktgestaltung und Planung einer Montage werden diskutiert. Im Kurs werden Grundlagen der Montageprozesse wie Fügen, Handhaben, Kontrollieren und Justieren erläutert. Große Aufmerksamkeit wird außerdem dem Thema Industrieroboter gewidmet. Anwendungsbeispiele und die Diskussion selbstgewählter Montageaufgaben illustrieren den Inhalt. Zielsetzung ist:
- Kennen, auswählen und anpassen von Prozessen für Montageaufgaben nach wirtschaftlichen Bedingungen.
- Kenntnis der Technologie, Anwendung und Eigenheiten von Verfahren der Montagetechnik.

 Bewertung von Anforderungen aus Montagegesichtpunkten an vor- und nachgelagerte Prozesse und das zu montierende Produkt.

Zugangs- bzw. empfohlene Voraussetzungen

keine

Prüfungsarten

schr. P. 90 Min.

Methoden

Seminaristischer Unterricht bis 50 TN mit Beispielen Medienform: Presentertechnik (Tafelarbeit) mit Skriptum und Beamer

Besonderes

keine Angabe

Empfohlene Literaturliste

- 1. Grundig, Claus-Gerold: Fabrikplanung, 2. Auflage, Hanser, München, 2006
- 2. Kettner, Schmitt, Greim: Leitfaden der systematischen Fabrikplanung, 1. Auflage, Hanser, München, 1984
- 3. Wiendahl, Reichhardt, Nyhuis: Handbuch Fabrikplanung, 1. Auflage, Hanser, München, 2009
- 4. Schenk, Wirth: Fabrikplanung und Fabrikbetrieb, 1. Auflage, Springer, Berlin 2004
- 5. Pawellek, G.: Ganzheitliche Fabrikplanung, 1. Auflage, Springer, Berlin 2008
- 6. Helbing, K.: Handbuch Fabrikprojektierung, 1. Auflage, Springer, Berlin 2010
- 7. Beitz, W., Grothe, K.-H. u.a.: Dubbel Taschenbuch für den Maschinenbau, 22. Auflage, Springer, Berlin, 2007
- 8. Arnold, Isermann, Kuhn, Tempelmaier, Furmans (Hrsg.): Handbuch Logistik, 3. Auflage Hanser VDI, 2008

- 9. Reinhardt, Zäh: Skript zur Vorlesung Montage, Handhabung und Industrieroboter, iwb der TU München, in der aktuellen Fassung
- 10. Beitz, Grote u.a.: Dubbel Handbuch für den Maschinenbau, 20. Auflage, Springer, Berlin, 2001
- 11. Lotter, Wiendahl: Montage in der industriellen Produktion: Ein Handbuch für die Praxis, VDI/Hanser, 2013
- 12. Konold, Reger: Praxis der Montagetechnik: Produktdesign, Planung, Systemgestaltung, Vieweg, 2003

W4104 FWP – INTERKULTURELLES MANAGEMENT

Ziele

Interkulturelle Kompetenz

d.h. Fähigkeit seine eigene deutsche Kultur zu reflektieren eine andere Kultur zu verstehen

und mit den Unterschieden zwischen der eigenen und fremden Kultur zu Recht zu kommen.

Ziel ist der erfolgreiche Umgang mit Managementproblemen in Interkulturellen Überschneidungssituationen.

Inhalt

- Erwerb von Wissen über fremde Kulturen z.B. USA, Brasilien, Südafrika, Indien,
 China, Russland
- Vermeidung von Diskriminierung und Ausgrenzung
- Förderung des Einfühlungsvermögens in fremde Kulturen
- Entwicklung von Konfliktlösungsstrategien
- Einsicht in die Relativität von Weltinterpretationen

- Reflexion der kulturellen Gebundenheit eigenen Verhaltens und Handels
- Erkennen und Vermeiden von Stereotypen
- Förderung der Fähigkeit, mit Ungewissheiten und Unklarheiten im Interkulturellen Handlungsfeld umzugehen

Zugangs- bzw. empfohlene Voraussetzungen

keine

W-09: Physik 2

Prüfungsarten

schr. P. 90 Min.

Lehr- und Lern-Methoden

Seminaristischer Unterricht mit Beispielen

Besonderes

Keine

Empfohlene Literaturliste

Unterrichtsmaterialen des Dozenten im ilearn mit Literaturhinweisen

▶ W4104 FWP - WISSENSCHAFTLTICHES ARBEI-TEN

Ziele

Die Studierenden sind in der Lage, die Wichtigkeit und Bedeutung des Wissenschaftlichen Arbeitens zu erkennen und zu verstehen. Sie sind in der Lage, die allgemeinen Grundlagen des Wissenschaftlichen Arbeitens darzustellen. Die Studierenden können die erworbenen Kenntnisse des Wissenschaftlichen Arbeitens auf konkrete und abstrakte Themenstellungen anwenden. Nach Abschluss des Kurses können die Studierenden insbesondere eine wissenschaftliche Arbeit (insbesondere Prüfungsstudien- oder Bachelorarbeit) logisch und strukturiert aufbauen, entsprechende Literatur finden, ausleihen und verwalten. Sie sind in der Lage, richtig zu zitieren und ein korrektes und sinnvoll gegliedertes Inhaltsverzeichnis zu erstellen.

Inhalt

Der Kurs "Wissenschaftliches Arbeiten" vermittelt den Studierenden die allgemeinen Grundlagen des wissenschaftlichen Arbeitens, welche für ihren Studienerfolg unersetzbar sind. Es sollen dabei insbesondere folgende Themen bzw. Fragen behandelt werden: "Wie gliedere ich eine wissenschaftliche Arbeit, insbesondere Prüfungsstudienarbeiten und Bachelorarbeiten?" - "Wo finde ich entsprechende Literatur und wie kann ich die Literatur verwalten?" - "Welche Literatur kann man verwenden? - "Wie zitiert man richtig?", etc. Der Kurs richtet sich vor allem an Studierende des Bachelorstudiengangs "Wirtschaftsingenieurwesens" bis zum 4. Fachsemester. Doch auch Studierende höherer Semester können aus diesem Kurs Vorteile ziehen und Unsicherheiten bei der Anfertigung von Haus-, Seminar- oder Bachelorarbeiten beseitigen.

Zugangs- bzw. empfohlene Voraussetzungen

keine

Prüfungsarten

Prüfungsstudienarbeit

Methoden

Vortrag, seminaristischer Unterricht, Gruppenarbeit, Selbstlernphasen

Besonderes

Keine Angabe

Empfohlene Literaturliste

werden im Kurs bekannt gegeben

OW-21 INNOVATIONSMANAGEMENT

Modul Nr.	W-21
Modulverantwortliche/r	Prof. Harald Zimmermann
Kursnummer und Kursname	WZF Innovationsmanagement
	W4105 Innovationsmanagement
Lehrende	Prof. Harald Zimmermann
Semester	4
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach, Wahlfach
Niveau	Undergraduate
SWS	4 SWS für Vorlesung (zusätzl. 2 SWS für WZF)
ECTS	5
Workload	Präsenzzeit: 60 Stunden (zusätzl. 30 Stunden für WZF)
	Selbststudium: 60 Stunden
	Virtueller Anteil: 30 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden sollen verstehen, dass Innovationen nicht nur die Triebfeder unseres Wirtschaftswachstums sind, sondern eben deswegen auch ein wesentlicher Faktor für die gesamtgesellschaftliche Entwicklung.

Innovationen werden auch als schöpferische Zerstörung bezeichnet, was sowohl eine Verbindung zur Evolutionsbiologie wie auch zur Philosophie vermuten lässt. Sie sind das Produkt komplexer, meist innerbetrieblicher, Prozesse.

Dies sollen die Studierenden verstehen, um in der Praxis die richtigen (Management-) Tools zur rechten Zeit einsetzen zu können, um Innovationsprozesse sowohl beschreiben als auch steuern zu können. Um die dazu notwendigen sozialen Kompetenzen wie auch Methodenkompetenzen zu erwerben, wird ihnen eine ganze Reihe von Modellen (DISG, Belbin, House of Change, PLP, KVP etc.) erläutert, um diese dann als Werkzeuge zur Problemlösung in der Praxis anzuwenden:

Wie lerne ich mich und meine Kollegen/-innen einzuschätzen (DISG) und wie gestalte ich ein optimales Team (Belbin)?

Wie kommt man zu einer Idee, dann zu einem Projekt und am Ende in kürzest möglicher Zeit mit minimalem Ressourceneinsatz zu einem Produkt, das auf dem Markt ein voller Erfolg wird?

Und wie steuert man das Ganze am besten?

Diese Fragen gilt es, innerhalb 15 Vorlesungen plus interner wie externer Gruppenarbeit gemeinsam zu beantworten.

Die dadurch erworbenen persönlichen Kompetenzen wie Fachkompetenzen sollen die Studierenden in die Lage versetzen, selbst zu einem innovativen Betriebsklima beitragen und (innovative) Projekte gut managen zu können. Darüber hinaus können sie den Begriff Innovationsmanagement in einer beliebigen betrieblichen Umgebung gut einschätzen und ggf. beeinflussen.

Verwendbarkeit in diesem Studiengang

W-36 Bachelormodul

Verwendbarkeit in diesem und in anderen Studiengängen

Das Modul IM ist universell für alle technischen und betriebswirtschaftlichen Studiengänge verwendbar.

Zugangs- bzw. empfohlene Voraussetzungen

Es wird für das Modul IM ein grundlegendes technisches und betriebswirtschaftliches Verständnis vorausgesetzt, welches durch entsprechende Grundlagenvorlesungen in beiden Bereichen vertieft sein sollte.

Inhalt

Die Vorlesung folgt grundsätzlich der Struktur des Buches Innovationsmanagement, wobei vorab grundlegende Begriffe erklärt werden, mit deren Hilfe das Theorem der nachhaltig erfolgreichen Unternehmensführung erläutert wird. Es folgt die Einführung in verschiedene Modelle (DISG, Belbin, House of Change etc.), um gut funktionsfähige Teams als Basis für gute Projektarbeit aufstellen zu können. Dann werden die Grundlagen samt Werkzeuge für ein ordentliches Projektmanagement behandelt

Im Weiteren werden die Inhalte der Kapitel des Buches mit praktischen Erfahrungen verglichen und in Gruppenarbeiten vertiefend diskutiert. Dabei geht es um Verstehen, Planen, Entwickeln und Umsetzen von Innovationen. Im Besonderen werden die beiden sehr unterschiedlichen Innovationsstrategien WOIS und Design Thinking verglichen und exemplarisch zur Anwendung gebracht.

Lehr- und Lernmethoden

Vorlesung, soweit möglich über Zoom, unterbrochen von Gruppenarbeiten in entsprechend vorbereiteten Chatrooms.

Aufgaben und Feedback zwischen den Vorlesungen über iLearn.

Empfohlene Literaturliste

- 1. Vahrs, D.; Brem, A.: Innovationsmanagement, 5. Auflage
- 2. Gürtler, J., Meyer J.: Design Thinking in 30 Minuten; Gabal, 5. Auflage 2013

W-22 UNTERNEHMENSNACHFOLGE UND BUSINESS SIMULATION

Modul Nr.	W-22
Modulverantwortliche/r	Prof. Dr. Jutta Stirner
Kursnummer und Kursname	W5106 Unternehmensnachfolge und Business Simu-
	lation
Lehrende	Reinhard Lucha
	Laura Hlawatsch
	Christian Schläger
Semester	5
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Fachkompetenz:

Verständnis der theoretischen Grundlagen des Strategischen Managements. Anwendung von Analyse- und Managementtools in Theorie und betrieblicher Praxis. Trainieren

des unternehmerischen Denkens und Handelns. Verdeutlichung betriebswirtschaftlicher Zusammenhänge und strategischer Entscheidungsfelder durch praktische Anwendung der Lehrinhalte in einem praxisnahen Unternehmensplanspiel. Detaillierte Darstellung und Visualisierung des Prozesses strategischer Entscheidungen am Beispiel "Unternehmensnachfolge".

Methodenkompetenz:

Die Studierenden gewinnen vertiefte Einsicht in die betriebswirtschaftlichen Zusammenhänge durch "learning-by-doing" bzw. "Selbermachen" in der Unternehmenssimulation - angefangen vom Businessplan und dessen Präsentation über simulierte Geschäftstätigkeit im Wettbewerb bis hin zur Ergebnispräsentation vor Kapitalgebern.

Sozialkompetenz:

Die Business Simulation ermöglicht vielfältige Erkenntnisse über die Zusammenarbeit im Team, über die soziale Dynamik von Präsentationen und Besprechungen.

Verwendbarkeit in diesem Studiengang

W-36 Bachelormodul

Verwendbarkeit in anderen Studiengängen

W-36 Bachelormodul

Zugangs- bzw. empfohlene Voraussetzungen

W1107 Bilanzierung

W2106 Steuern

Modul W-18 Investition und Finanzierung

Inhalt

- Grundlagen zur Unternehmensnachfolge (Bedeutung des Mittelstandes in Deutschland, Perspektiven der Unternehmensnachfolge)
- Die Unternehmensübergabe (Unternehmensbeschreibung, Wahl des Nachfolgers, Rolle der Familienmitglieder/des Übergebers)
- Die Unternehmensübernahme (Auswahl eines geeigneten Betriebes, Geschäftsplan, Unternehmenskultur, Akzeptanz des Nachfolgers im Unternehmen, Fördermöglichkeiten und Finanzierung)
- Der Übergabeprozess (Nachfolgeprozesse, Unternehmenswert, Formen der Betriebsübergabe, Probleme und Konflikte, Kommunikation u. Zusammenarbeit mit Geschäftspartnern)
- Testament und Erbfolge, Steuern und Nachfolge, gesellschaftsrechtliche Aspekte
- Virtuelle Unternehmensgründung am PC und Präsentation des unternehmerischen Erfolgs

Lehr- und Lernmethoden

Präsentationen, Folien, Tafel, Skriptum, Simulation, VHB-Kurs

Empfohlene Literaturliste

- 1. Hering/Olbrich, Unternehmensnachfolge, Oldenbourg Verlag, München, 2003
- 2. Klöckner, Buy-outs in Family Business, Gabler Verlag, 2009
- 3. Schröder/Westerheide (Hrsg.), Wirtschaftliche und gesellschaftliche Bedeutung von Familienunternehmen, Nomos Verlag, 2010
- 4. Felden/Pfannenschwarz, Unternehmensnachfolge, Oldenbourg Verlag, München, 2008

5. Wolter Hans-Jürgen, Informationsasymmetrien in der familienexternen Nachfolge und ihre Überwindung, IFM Bonn, 2009

○W-23 BETRIEBLICHE QUALITÄT UND STATISTIK

Modul Nr.	W-23
Modulverantwortliche/r	Prof. Raimund Förg
Kursnummer und Kursname	W4106 Qualitätsmanagement
	W4107 Statistik
Lehrende	Prof. Dr. Maria Kufner
	Norbert Sosnowsky
Semester	4
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	6
ECTS	7
Workload	Präsenzzeit: 90 Stunden
	Selbststudium: 100 Stunden
	Virtueller Anteil: 20 Stunden
	Gesamt: 210 Stunden
Prüfungsarten	schr. P. 120 Min.
Dauer der Modulprüfung	120 Min.
Gewichtung der Note	7/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden verstehen die Funktionszusammenhänge zum Leiten und Lenken eines Industriebetriebes anhand der Methoden des Qualitätsmanagements.

Die Studierenden erwerben zudem Grundkenntnisse der beschreibenden und schließenden Statistik und werden an (Übungs-) Beispielen in die betreffenden Anwendungen eingeführt.

Anhand von Beispielen werden zentrale Themengebiete des Operations Research vorgestellt und grundlegende mathematische Optimierungsverfahren zur Behandlung dieser Fragestellungen eingeführt.

Kurs Statistik:

Die Studierenden des Studiengangs Wirtschaftsingenieurwesen erlernen im Rahmen des Moduls Statistik, Grundkenntnisse der Deskriptiven Statistik, der Wahrscheinlichkeitsrechnung (Kombinatorik) und der Beschreibenden Statistik. Das erworbene Wissen führt zur Fähigkeit Prozessparameter statistisch korrekt angeben zu können. Außerdem können die Studierenden, nach erfolgreichem Abschluss des Moduls, statistisch korrekte Aussagen über die Signifikanz, bzw. über den Vergleich von statistischen Massen treffen. Kombinatorische Vorgänge können anhand von Beispielen erklärt werden und der Begriff "Zufall" kann mathematisch beschrieben werden. Ein Einblick in verschiedene Verteilungsfunktionen zeigt den Zusammenhang in der Praxis auf und kann daraus auch transferiert werden.

Fachkompetenz:

Die Studierenden kennen und verstehen grundlegende statistische Methoden und Prinzipien, die in der statistischen Betrachtung von Vorgängen, Anwendung finden. Sie können beispielsweise Versuchsergebnisse statistisch korrekt darstellen und entscheiden, ob signifikante Unterschiede bei einem Vergleich von statistischen Massen vorliegen.

Methodenkompetenz:

Die Studierenden können in Fallbeispielen die richtigen statistischen Methoden anwenden und umsetzten. Dies ist die Grundlage zur Bewertung von Vorgängen (Versuchen/Vergleichen/Aufzeigen) in der Praxis.

Personale Kompetenz:

Die Absolventen des Moduls Statistik sind in der Lage die Durchdringung von Statistik in Abläufen und Vorgängen in unserer modernen Gesellschaft ein zu ordnen. Sie können die statistische Darstellung von Aussagen reflektieren.

Kurs Qualitätsmanagement:

- o Identifikation qualitätsrelevanter Faktoren
- o Erfassen von Prozessen und qualitätsrelevanter Vorgänge
- o sichere Methodenkenntnisse im Bereich Qualitätsmanagement
- Auswahl geeigneter Werkzeuge und Methoden zur Ausgestaltung und Optimierung von Prozessen
- o Analyse
- o Erarbeiten von Lösungsmöglichkeiten
- o Auswahl von Lösungen nach qualitäts- und wirtschaftlichen Gesetzmäßigkeiten
- o Überwachung der Implementierung
- o Interpretation der aktuellen Lage industrieller Abläufe

Verwendbarkeit in diesem und in anderen Studiengängen

Kurs Statistik:

Verwendbarkeit des Moduls für diesen Studiengang:

Im Rahmen des Moduls Statistik werden Anwendungen und Auswertung von statistischen Methoden erlernt. Die Kenntnisse dieses Moduls sind Voraussetzung für weitere Module in folgenden Semestern.

Verwendbarkeit des Moduls für andere Studiengänge:

Ein Einsatz des Moduls ist in allen Bachelor Studiengängen möglich.

Zugangs- bzw. empfohlene Voraussetzungen

Kurs Statistik:

Mathematik

Inhalt

Kurs Statistik:

- 1. Einführung, wo begegnet uns Statistik wann brauchen wir sie?
- 2. Beschreibende Statistik (deskriptive Statistik)
 - a. Grundbegriffe
 - b. Häufigkeitsverteilung (eindimensional)
 - c. Kumulierte Häufigkeiten und Verteilungsfunktion
 - d. Lageparameter und Streuungsparameter
 - e. Zweidimensionale Häufigkeitsverteilung
 - f. Korrelationsrechnung und Regressionsrechnung
- 3. Wahrscheinlichkeitsrechnung
 - a. Kombinatorische Grundlagen
 - b. Ergebnisalgebra
 - c. Wahrscheinlichkeit und Satz von Laplace
 - d. Unabhängige Ereignisse und bedingte Wahrscheinlichkeiten
 - e. Zufällige Variable und Wahrscheinlichkeitsverteilung
 - f. Erwartungswert und Varianz einer Verteilung (zus. Statistische Prozesskontrolle)
 - g. Wichtige diskrete Verteilungen

- h. Die Normalverteilung
- 4. Schließende Statistik
 - a. Problemstellung, Zufallsstichproben
 - b. Punktschätzung
 - c. Intervallschätzung
 - d. Hypothesentests

Lehr- und Lernmethoden

Kurs Statistik:

Die Modulinhalte werden im Rahmen einer Kombination aus Vorlesung und eines seminaristischen Unterrichts vermittelt. Um die praxisorientierte Anwendung der erlernten Modulinhalte zu verbessern, werden zu den einzelnen Bausteinen aus der Vorlesung, Beispiele aufgezeigt und zusammen mit den Studierenden im Rahmen der Vorlesung evaluiert. Übungen finden im Rahmen des seminaristischen Unterrichts statt – einzelne Fragestellungen und Herausforderung der Industrie werden zusammen mit den Studierenden identifiziert und Lösungsansätze diskutiert. Im Rahmen dieses Lehrstils erhalten die Studierenden die Möglichkeit Ihre Beobachtungs-, Kommunikations-, und Fachkompetenz zu reflektieren.

Empfohlene Literaturliste

Kurs Statistik:

- Michael Sachs (2009), Wahrscheinlichkeitsrechnung und Statistik, 3. Auflage, Hanser Verlag
- 2. Precht/Kraft/Bachmaier (2005), Angewandte Statistik 1, 7. Auflage, Oldenburg Verlag
- 3. Lothar Sachs (2003), Angewandte Statistik, 11. Auflage, Springer Verlag

4. Franz Kronthaler (2016), *Statistik angewandt: Datenanalyse ist (k)eine Kunst*, Springer Verlag

Prüfungsarten

Teil der Modulprüfung

▶ W4106 QUALITÄTSMANAGEMENT

Ziele

Ziele sind:

- o Identifikation qualitätsrelevanter Faktoren
- o Erfassen von Prozessen und qualitätsrelevanter Vorgänge
- o sichere Methodenkenntnisse im Bereich Qualitätsmanagement
- Auswahl geeigneter Werkzeuge und Methoden zur Ausgestaltung und Optimierung von Prozessen
 - Analyse
 - o Erarbeiten von Lösungsmöglichkeiten
 - Auswahl von Lösungen nach qualitäts- und wirtschaftlichen Gesetzmäßigkeiten
 - o Überwachung der Implementierung
- o Interpretation der aktuellen Lage industrieller Abläufe

Inhalt

- o Prozessorientiertes Qualitätsmanagement
- o ISO 9000 ff.
- o Aufbau und Einführung eines Qualitätsmanagementsystems
- o Methoden und Werkzeuge der Qualitätsplanung
- o Total Quality Management
- Entwicklung und Notwenigkeit des Qualit\u00e4tssmanagements speziell im industriellen Umfeld
- o Position des Menschen

Zugangs- bzw. empfohlene Voraussetzungen

keine.

Prüfungsarten

Teil der Modulprüfung

Methoden

Seminaristischer Unterricht/Hausübungen

Beamer, Tafelanschrieb in Kombination mit Skriptum

Empfohlene Literaturliste

1. Lins, Gerhard: Qualitätsmanagement für Ingenieure, Hanser, München-Wien

- 2. Pfeifer: Praxisbuch Qualitätsmanagement, Hanser, München-Wien
- 3. Weggemann, Mathieu: Wissensmanagement, mitp-Verlag, Landsberg
- 4. Pfeifer, Schmitt, Qualitätsmanagement, Hanser-Verlag

W4107 STATISTIK

Inhalt

- Einführung/Überblick
- o Beschreibende Statistik
- o Grundbegriffe der Wahrscheinlichkeitsrechnung
- Schließende Statistik

Zugangs- bzw. empfohlene Voraussetzungen

Analytische Grundlagen des Ingenieurstudiums/Ingenieurmathematik

Prüfungsarten

Teil der Modulprüfung

Methoden

Vorlesung mit integrierten Übungen, Hausübungen

Tafelanschrieb

DW-24 OPERATIONS RESEARCH

Modul Nr.	W-24
Modulverantwortliche/r	Prof. Dr. Stephan Scheuerer
Kursnummer und Kursname	W5107 Operations Research
Lehrende	Prof. Dr. Stephan Scheuerer
Semester	5
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 40 Stunden
	Virtueller Anteil: 50 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden sind mit Techniken des *Operations Research (OR)* vertraut und sind befähigt zur Lösung von Optimierungsproblemen der Praxis.

Nach dem Kurs können die Studierenden

o Problemstellungen mit Hilfe mathematischer Modelle formulieren.

- mathematische Modelle implementieren, lösen und die Lösung im Kontext des Entscheidungsproblems interpretieren.
- o Spezial-Software zur Lösung von Modellen anwenden.
- o die Grundlagen der eingesetzten Lösungsverfahren erläutern.
- Der Kurs fokussiert dabei auf
- ausgewählte, klassische Problemstellungen und Lösungsverfahren des Operations Research.
- o die praktische Anwendung von Verfahren des Operations Research.

Nach Absolvieren des Moduls *Operations Research* haben die Studierenden somit insb. folgende Kompetenzen erworben:

Fach- und Methodenkompetenz

Die Studierenden modellieren selbständig Optimierungsaufgaben aus der betrieblichen Praxis und lösen diese mit Hilfe von geeigneten Lösungstechniken des Operations Research. Dabei hilft ihnen eine Auswahl von typischen Anwendungsbeispielen und gängigen Lösungsverfahren, die sie im Rahmen dieses Kurses vorgestellt bekommen und zu beurteilen lernen. Mit Hilfe von Übungsaufgaben erlernen Sie eigenständig zu modellieren, komplexe Probleme zu strukturieren und zu analysieren, Lösungsverfahren zu evaluieren und zielgerichtet einzusetzen. Studierende validieren und bewerten die erhaltene Lösung.

Der Erwerb von **sozialen Kompetenzen** steht bei diesem Modul naturgemäß nicht im Vordergrund, wird aber durch Kooperation der Studierenden und gemeinsames Erarbeiten von Lösungen gefördert.

Die **persönliche Kompetenz** wird durch vertieftes selbständiges Erarbeiten und Lösen komplexer Probleme gefördert. Durch die Anwendung mathematischer Lösungstechniken und deren kritische Durchdringung erarbeiten sich die Studierende die Fähigkeit zum abstrakten und analytischen Denken.

Verwendbarkeit in diesem und in anderen Studiengängen

Das Modul kann in weiterführenden Studiengängen wie dem Master Wirtschaftsinformatik, sowie fachähnlichen Studiengängen verwendet werden.

Zugangs- bzw. empfohlene Voraussetzungen

Mathematikkenntnisse aus den Grundlagenmodulen.

Inhalt

- I. Einführung in Operations Research
 - 1. Begriffe, Anwendungsbeispiele und Geschichte des Operations Research
 - 2. Problemlösungsprozess, math. Modellbildung, Optimierung vs. Simulation
- II. Lineare Programmierung (LP)
 - 1. LP-Problemformulierungen, Standardform, Voraussetzungen LP, Übungsaufgaben LP
 - Spreadsheet Modelling und Lösung mit Microsoft Excel Solver, Sensitivitätsanalyse
 - 3. Der Simplex Algorithmus: erweitere Standardform, Simplex-Algorithmus in tabellarischer Form, Mixed Constraints und Spezialfälle, Sensitivitätsanalyse mit dem Simplex-Tableau, Simplex Methode in Matrix Form und der Revidierte Simplex-Algorithmus
 - 4. Grundlagen Dualitätstheorie
- III. Spezielle Optimierungsprobleme
 - 1. Transportproblem und Erweiterungen

- 2. Zuordnungsproblem
- 3. Transshipmentproblem
- IV. Gemischt-Ganzzahlige Lineare Programmierung (MIP)
 - 1. Grundlagen und MIP-Modellierung mit Übungsaufgaben
 - 2. Das Branch-and-Bound Lösungsverfahren für MIP-Probleme
 - 3. MIP-Modellierung in der Praxis: Überblick über professionelle MIP-Modellierungsumgebungen, -sprachen und -Solver, MIP-Modellbildung mit Solver Studio und AMPL, Lösung mittels MIP-Solver

V. Optimieren in Netzen

- 1. Grundlagen Graphentheorie
- 2. Das Kürzeste-Wege-Problem und Lösung mit dem Dijkstra-Algorithmus
- 3. Vorstellung typischer Netzwerk-Probleme z.B. Minimal Spanning Tree, Max Flow Problem
- VI. Einblick in weitere Techniken und wenn möglich Gastvortrag aus der Praxis

Lehr- und Lernmethoden

Blended Learning mit virtuellen Lehranteilen und Präsenzlehre. Begleitend für das Selbststudium werden umfangreiche Übungsaufgaben inkl. Lösung bereitgestellt. Rückfragen werden in der Präsenzlehre oder via Diskussionsforum besprochen.

Besonderes

Nach Möglichkeit wird ein Gastvortrag zu Anwendungsbeispielen aus der beruflichen Praxis angeboten.

Empfohlene Literaturliste

Englischsprachige Lehrbücher zu Grundlagen des Operations Research:

- David R. Anderson, et. al.: An Introduction to Management Science, 2nd Ed., Cengage Learning EMEA, Cheriton House, UK, 2014 (ISBN 9781408088401)
- Frederick S. Hillier, Gerald J. Lieberman: Introduction to Operations Research, 10th Ed., McGraw-Hill, NY, USA, International Edition 2014 (ISBN 9781259253188)
- 3. Frederick S. Hillier, Mark S. Hillier: Introduction to Management Science, 5th Ed., McGraw-Hill, NY, USA, International Edition 2014 (ISBN 9781259010675)
- 4. John A. Lawrence, Barry A. Pasternack: Applied Management Science, 2nd Ed., John Wiley & Sons, Hoboken, NJ, USA, 2002 (ISBN 9780471391906)
- 5. Cliff Ragsdale: Spreadsheet Modeling & Decision Analysis, 7th Ed., Cengage Learning, Stamford, USA, 2015 (ISBN 9781285418681)
- Bernhard W. Taylor: Introduction to Management Science, 11th Ed., Pearson, Boston, USA, 2013 (ISBN 9780273766407). Companion Website mit Online Modulen: http://wps.prenhall.com/bp_taylor_introms_11/220/56508/ 14466191. cw/ index.html

Deutschsprachige Lehrbücher zu Grundlagen des Operations Research:

- 1. Wolfgang Domschke, Andreas Drexl: Einführung in Operations Research, 8. Aufl., Springer, Heidelberg, 2011 (ISBN 9783642181115)
- 2. Leena Suhl, Taieb Mellouli: Optimierungssysteme, 3. Auflage, Springer, Berlin Heidelberg, 2013 (ISBN 9783642389368)
- 3. Brigitte Werners: Grundlagen des Operations Research, 3. Auflage, Springer, Heidelberg, 2013 (ISBN 9783642401022)

Operations Research Lehrbücher mit besonderem Fokus (u.a. Logistik, math. Modellbildung):

- Dieter Feige, Peter Klaus: Modellbasierte Entscheidungsunterstützung in der Logistik, Deutscher Verkehrs-Verlag, Hamburg, 2008 (ISBN 9783871543715)
- Steglich Mike, Feige Dieter, Klaus Peter: Logistik-Entscheidungen Modellbasierte Entscheidungsunterstützung in der Logistk mit LogisticsLab, De Gruyter/Oldenburg, Berlin/Boston, 2. Aufl., 2016 (ISBN 978-3-11-042742-4, 978-3-11-043984-7)
- 3. Tore Grünert, Stefan Irnich: Optimierung im Transport Band I: Grundlagen, Band II: Wege und Touren, Shaker Verlag, Aachen, 2005 (ISBN 3832245146 und 3832245154)
- 4. H. Paul Williams: Model Building in Mathematical Programming. 5. Aufl., Wiley, Chichester, 2013 (ISBN 9781118443330)
- 5. Robert Fourer, David M. Gay, Brian W. Kernighan: AMPL A Modeling Language for Mathematical Programming, 2. Aufl., Thomson, Duxbury, 2003 (ISBN 0-534-38809-4), Download: http://ampl.com/resources/the-ampl-book/
- Josef Kallrath: Gemischt-ganzzahlige Optimierung Modellierung in der Praxis -Mit Fallstudien aus Chemie, Energiewirtschaft, Metallgewerbe, Produktion und Logistik, Springer Vieweg, Wiesbaden, 2. Aufl., 2013 (ISBN 978-3-658-00689-1)

Internet-Quellen (Stand 27.7.2018):

- https://ampl.com
- https://neos-server.org/neos/solvers/milp:Gurobi/AMPL.html
- https://solverstudio.org

DW-25 KUNSTSTOFF- UND FERTIGUNGSTECHNIK

Modul Nr.	W-25
Modulverantwortliche/r	Prof. Dr. Andrey Prihodovsky
Kursnummer und Kursname	W5101 Kunststofftechnik
	W5102 Fertigungstechnik
Lehrende	Prof. Dr. Mathias Hartmann
	Prof. Dr. Andrey Prihodovsky
	Christian Trum
Semester	5
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	8
ECTS	10
Workload	Präsenzzeit: 120 Stunden
	Selbststudium: 110 Stunden
	Virtueller Anteil: 70 Stunden
	Gesamt: 300 Stunden
Prüfungsarten	schr. P. 120 Min.
Dauer der Modulprüfung	120 Min.
Gewichtung der Note	10/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Das Modul Fertigungstechnik soll den Studenten grundlegende Kenntnisse über heute genutzte Fertigungsmethoden und Kunststoffe vermitteln. Die Vorlesungen sind als

Grundlagenvorlesung ausgelegt, damit der angehende Wirtschaftsingenieur die Bedeutung einer modernen Fertigung aber auch mögliche Schwierigkeiten im Umgang und in der Auslegung von Fertigungseinrichtungen verstehen und bewerten kann.

Durch das Teilmodul Fertigungstechnik kennen die Studierenden die relevanten Fertigungsverfahren der Hauptgruppen Urformen, Umformen und Trennen (DIN 8580) in der industriellen Produktion. Sie können die Verfahren systematisieren und die Wirkmechanismen zwischen Werkstoff, Werkzeug und Fertigungsanlage theoretisch durchdringen. Die Studierenden können auf Basis der gegebenen theoretischen Kenntnisse die relevanten Prozessparameter analysieren. Sie können durch Vergleich von produktbezogenen, werkstoffbezogenen, wirtschaftlichen und umwelttechnischen Verfahrenskriterien eine Verfahrensauswahl für den Produktentwicklungsprozess begründen.

Nach dem Besuch des Teilmoduls Kunststofftechnik haben die Studierenden einen Überblick über Anwendungsfelder von Kunststoffprodukten. Sie kennen die relevanten Fertigungsverfahren wie Extrusion, Spritzguss, Thermoformen und Additive Fertigung und können diese unter Betrachtung von Stückzahlen, Investkosten und geometrischer Komplexität zielgerichtet für einen gegebenen Anwendungsfall auswählen. Die Kenntnis der Reaktionsmechanismen mit der zugeordneten Verfahrenstechnik zur Darstellung diverser Kunststoffe sowie die Einordnung der jeweiligen physikalischen und chemischen Eigenschaften befähigt die Studierenden, den passenden Werkstoff für eine Funktionsstruktur zu finden. Eine Übersicht zur Anwendung von Faserverbundstrukturen rundet das Portfolio der Werkstoffauswahl ab. Eine Einführung zum Thema Kunststoffrecycling ergänzt die Betrachtung von Kunststoffen in Richtung Nachhaltigkeit.

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbar für andere ingenieurswissenschaftliche Studiengänge

Zugangs- bzw. empfohlene Voraussetzungen

Physik, Chemie, Mathematik, Werkstofftechnik, Aufbau der Materie und Bindungskonzepte in Molekülen

Inhalt

Die Vorlesung Kunststofftechnik beinhaltet:

- Motivation und Einführung: Markt und Produkte Kunststoffe; wichtige Vertreter;
 Überblick Grundlagen
- Chemie des Kohlenstoff-Atoms: Elektronegativität und polare Bindung; Oxidationszahlen; Orbitalmodelle; Bindungen des C-Atoms; Verbindungsklassen / reaktive Gruppen; Reaktionstypen der organischen Chemie
- Kunststoff-Erzeugung: Rohöl-Aufbereitung; Monomer-Gewinnung; Polymerisations-Reaktionen (Kettenwachstums- und Stufenwachstums-Reaktionen mit Beispielen); Additivierung; Verfahren zur Polymerisation
- Funktionalisierung von Kunststoffen: Partikelfreiheit und Reinraumfertigung; flexible Elektronik; funktionale Oberflächen; Sterilisation von Kunststoff-Produkten; wirtschaftliche und technische Aspekte der Verpackungsgestaltung
- o Weiterverarbeitung von Kunststoffen:
 - Extrusion und Blasformen: Fließfähigkeit von Kunststoff-Schmelzen; Zerkleinern, Mischen, Plastifizieren, Granulieren, Lagern; Kalandrieren; Extrusion; Extrusions-Blasformen
 - Kunststoff-Spritzguss: Grundlegendes Fertigungsprinzip, Werkzeugtechnologie, Fließbilder, Schwindung und Verzug
 - Rapid Prototyping: Verfahren der additiven Fertigung, konstruktive Besonderheiten und Möglichkeiten, Anwendungen
- o Polymere: Eigenschaften und Anwendung
- Diskussion der wichtigsten Vertreter aus Thermoplasten und Duromeren; Reaktionstypen und Eigenschaften, Einsatzbereiche;
- Composites: Anwendungsbereiche von Hochleistungs-Faserverbund-Materialien,
 Bestandteile und Wirkweise, Herstellverfahren
- Kunststoffrecycling: Kunststoffabfall-Fraktionen, grundlegende Verfahren zur Behandlung von Kunststoffabfällen unter Betrachtung von wirtschaftlichen und ökologischen Aspekten

Die Vorlesung spanende Fertigung beinhaltet folgende Themenschwerpunkte:

- Auswahlkriterien: Welche Werkzeugmaschine für welche Fertigungsaufgabe, Kriterien zur Verfahrensauswahl, Kriterien zur Maschinenauswahl, Hilfsmittel im Unternehmensbereich Arbeitsvorbereitung
- Grundlagen der Zerspanung: Kinematik und Geometrie des Zerspanvorganges,
 Schneidteilgeometrie, Spanbildung, Spanarten und Spanformen, Mechanische
 Beanspruchung, Zerspankraft, Thermische Beanspruchung
- Werkzeuge und Schneidstoffe: Schneidstoffe, Verschleiß und Standgrößen, Kühlschmiermittel, Wirtschaftliche Schnittbedingungen
- Sägen: Definition, Anwendungsspektrum, Prozessgrößen, Typische Werkzeuge, Bauformen
- Fräsen: Definition, Anwendungsspektrum, Prozessgrößen, Typische Werkzeuge, Bauformen
- Drehen: Definition, Anwendungsspektrum, Prozessgrößen, Typische Werkzeuge, Bauformen
- Bohren: Definition, Anwendungsspektrum, Prozessgrößen, Typische Werkzeuge, Bauformen
- Räumen: Definition, Anwendungsspektrum, Prozessgrößen, Typische Werkzeuge, Bauformen
- Feinbearbeitung: Definition, Anwendungsspektrum, Prozessgrößen, Typische Werkzeuge, Bauformen
 - o Schleifen
 - Hohnen
 - Läppen

Die Vorlesung spanlose Fertigung beinhaltet folgende Themenschwerpunkte:

Klassifikation der Fertigungsverfahren nach DIN8580

o Urformen:

- o Einleitung der urformenden Verfahren
- Gießen: Gusswerkstoffe, Grundlagen der Erstarrung, Gussfehler
- o Halbzeugguß
- o Gießverfahren mit verlorenen Formen aus Dauermodellen
- Gießverfahren mit verlorenen Formen aus verlorenen Modellen
- o Gießverfahren mit Dauerformen
- o Pulvermetallurgie
- Umformen
- o Einleitung der umformenden Verfahren
- o Werkstofftechnische Grundlagen des Umformens
- Massivumformverfahren: Stauchen, Schmieden, Walzen, Strang- und Fließpressen
- Blechumformverfahren: Biegen, Drücken, Streck- und Tiefziehen
- o Trennen: spanlose Trennverfahren
- Abtragen

Lehr- und Lernmethoden

Seminaristischer Unterricht

Medienform Beamer, Visualiser, Tageslichtprojektor, Tafel

Besonderes

keine Angabe

Empfohlene Literaturliste

- 1. O. Schwarz: Kunststoffkunde, Vogel, 6. Aufl., 2000
- 2. W. Michaeli: Einführung in die Kunststoffverarbeitung, Hanser, 4. Aufl., 1999
- 3. Schürmann, H., Konstruieren mit Faser Kunststoff Verbunden, 2007
- 4. Rudolph, Kiesel, Aumnate: Einführung Kunststoffrecycling; Hanser Verlag, 2019
- 5. Heine B., Schmid, D. u.a.: Industrielle Fertigung Fertigungsverfahren, Mess- und Prüftechnik, 8. Auflage, VERLAG EUROPA-LEHRMITTEL, 2019
- 6. Reinhard Koether, Alexander Sauer: Fertigungstechnik für Wirtschaftsingenieure, 5. Auflage, Carl Hanser Verlag, München, 2017
- 7. Dietrich, J.: Praxis der Umformtechnik, 12. Auflage, Springer Vieweg, Wiesbaden, 2018
- 8. König, W.; Klocke, F.: Fertigungsverfahren 1. Drehen, Fräsen, Bohren. 8. Auflage. Berlin: Springer 2008.
- 9. Eversheim, W.: Organisation in der Produktionstechnik: Arbeitsvorbereitung.4. Auflage. Berlin: Springer 2002.
- 10. Hoischen, H.; Hesser, W.: Technisches Zeichnen. 31. Auflage. Berlin: Cornelsen 2007.
- 11. Weck, M.; Brecher, C.: Werkzeugmaschinen. Automatisierung von Maschinen und Anlagen. 6. Auflage. Berlin: Springer 2006.
- 12. Dillinger, J.: Fachkunde Metall. 55. Auflage. Haan-Gruiten: Europa-Lehrmittel 2007. DIN 8580, DIN 8589 alle Teile

OW-26 BETRIEBLICHE INFORMATIONSSYSTEME

Modul Nr.	W-26
Modulverantwortliche/r	Prof. Harald Zimmermann
Kursnummer und Kursname	WZF Betriebliche Informationssysteme
	W5103 Betriebliche Informationssysteme
Lehrende	Prof. Harald Zimmermann
Semester	5
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach, Wahlfach
Niveau	Undergraduate
SWS	2 SWS für Vorlesung (zusätzl. 2 SWS für WZF)
ECTS	3
Workload	Präsenzzeit: 30 Stunden (zusätzl. 30 Stunden für WZF)
	Selbststudium: 30 Stunden
	Virtueller Anteil: 30 Stunden
	Gesamt: 90 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	3/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden sollen verstehen, wie der Begriff BIS im Rahmen der Wirtschaftsinformatik einzuordnen ist, welche Bedeutung BIS heute haben und dass deren rasante Entwicklung eine notwendige Folge des im Zuge der "vierten industriellen Revolution" stetig steigenden Bedarfes an immer besser aufbereiteten Informationen als Wissens-, und damit Entscheidungsgrundlage, ist und bleibt.

Sie sollen ferner wissen, wie BIS aufgebaut und welche Systemarchitekturen typisch sind.

Auf Basis dieser Fachkompetenzen sollen die Studierenden lernen, ihre Methodenkompetenzen zu erweitern, u.a. wie BIS mit Hilfe der Automatisierungspyramide nach ISA-95 eingeordnet werden können, um ihre zukünftige Arbeitsumgebung strukturell analysieren und entsprechende Entscheidungsprozesse bei der Einführung neuer oder Optimierung bestehender BIS unterstützen zu können.

Sie müssen verstehen, wie betriebliche Prozesse visualisiert und mit Ansätzen des Lean Managements optimiert werden können.

Sie sollen lernen, wie Informationen in Dashboards und zu Berichten aufbereitetet werden können, um als wesentliches Hilfsmittel bei Problemlöse- und Entscheidungsprozessen dienlich zu sein. Dabei sollen sie sich selbst als Problemlöser in ihren zukünftigen Jobs erkennen und verstehen lernen.

Auf Basis der erworbenen persönlichen Kompetenzen sollen die Studierenden ihre sozialen Kompetenzen erweitern, indem sie in ihren Gruppen diskutieren, wie sie den technischen wie gesellschaftlichen Paradigmenwechsel mitgestalten können, der durch die Schaffung digitaler Zwillinge, AR und VR sowie dem Einsatz von KI bereits im Werden ist.

Verwendbarkeit in diesem Studiengang

W-36 Bachelormodul

Verwendbarkeit in diesem und in anderen Studiengängen

Das Modul BIS ist grundsätzlich für alle betriebswirtschaftlichen und technischen Bereiche nutzbringend verwendbar.

Zugangs- bzw. empfohlene Voraussetzungen

Es wird grundlegendes technisches Verständnis vorausgesetzt, das idealerweise durch Grundlagenvorlesungen aus dem Gebiet der Informatik, besonders dem Gebiet der Datenbanken, vertieft sein sollte.

Inhalt

Anhand der historischen Entwicklung des Industrie-Zeitalters wird die zunehmende Bedeutung von Informationen und deren Verarbeitung zu Wissen als Grundlage für die betrieblichen Entscheidungsprozesse veranschaulicht. Dabei wird anhand des Buches "Das informierte Management" verdeutlicht, dass bis heute der Sprung vom MIS zum MUS noch nicht vollendet ist. Dabei werden die für BIS wesentlichen Begriffe aus der Wirtschaftsinformatik samt "Industrie 4.0" erläutert und der strukturelle Aufbau von BIS erklärt.

Dann wird die Automatisierungspyramide nach ISA-95 erläutert und in Gruppenarbeiten vertiefend diskutiert, wie diese in ihren zukünftigen Arbeitsumgebungen nutzbringend angewendet werden kann.

Im Folgenden geht es um die Virtualisierung von Prozessen als Basis für Prozessoptimierung. Dabei müssen die Studierenden mit der Software iGrafx üben, Prozesse mittels Swim-Lane-Diagrammen zu visualisieren und über das Repository mit Stammdaten zu versehen. Parallel lernen Sie Tools aus der Welt der Produktionssysteme kennen, 5S, 7V, PLP, um die Prozesse schon während der Visualisierung optimieren zu können.

Dazu werden den Studierenden anhand von Übungsbeispielen und Projektarbeiten die grundlegenden Anwendungsfähigkeiten vermittelt, wobei auf folgende Software näher eingegangen wird: iGrafx (Prozesse & IMS), SAP und CSS (stellv. für ERP-Systeme), PI & LEGATO (stellv. für MES), für die ERP-Prozessanalyse Celonis und für die Datenanalyse und Informationsaufbereitung in Form von Dashboards und Berichten QlikView.

Dazu sind auch einige Sondereinlagen von externen Spezialisten vorgesehen.

Lehr- und Lernmethoden

Vorlesung, soweit möglich über Zoom, unterbrochen von Gruppenarbeiten in entsprechend vorbereiteten Chatrooms.

Aufgaben und Feedback zwischen den Vorlesungen über iLearn.

Übungen zu Prozessvirtualisierung mittels der Software iGrafx.

Erstellung von kurzen Lehrsequenzen (Videos) zur Unterstützung der Vorlesungsinhalte.

Empfohlene Literaturliste

- Dorn, B. (Hrsg.): Das informierte Management, letzte Auflage 1994
 DIN EN 62264
- 2. Thiel, K.; Meyer, H.; Fuchs, F.: MES Grundlage der Produktion von morgen, 15. Auflage, April 2008

OW-27 PERSONALFÜHRUNG UND ARBEITSRECHT

Modul Nr.	W-27
Modulverantwortliche/r	Prof. Peter Schmieder
Kursnummer und Kursname	W5104 Personalführung und Arbeitsrecht
Lehrende	Prof. Dr. Josef Langenecker
	Prof. Peter Schmieder
Semester	5
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 60 Stunden
	Virtueller Anteil: 30 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Durch die didaktische Synthetisierung von Fach- mit Methoden-, Sozialen und Persönlichen Kompetenzen werden folgende Lernergebnisse erzielt:

Verständnis von ausgewählten Management- und Entscheidungstechniken mit vertiefter Anwendung in Führung und direktem Umgang mit Mitarbeitern innerhalb von arbeitsrechtlichen Rahmenbedingungen. Die Studierenden sollen zu diesem Zweck moderne

Instrumente der Personalführung (Recruiting, Personalentwicklung, Retention, Change) analysieren und in konkreten Anwendungssituationen für das spätere Berufsleben einüben. Zusätzlich werden relevante arbeitsrechtlichen Kenntnisse fallbezogen angewendet, die für einen juristisch korrekten und führungstechnisch erfolgreichen Umgang mit Mitarbeitern, Kollegen und Vorgesetzten charakterisierend sind.

Verwendbarkeit in diesem und in anderen Studiengängen

verwendbar für Teilmodul "Personalführung" in Bachelorstudiengängen verwendbar im Teilmodul "Arbeitsrecht" in Bachelorstudiengängen

Zugangs- bzw. empfohlene Voraussetzungen

Teilnahme ab dem 5. Fachsemester

Inhalt

Teil Personalführung:

Persönliche Kompetenz:

- o Eigenbild/Fremdbild einer Führungskraft
- o Persönlichkeitspsychologie und Temperamentenlehre
- o Behaviourismus und Verhaltenspsychologie

Fachkompetenz:

- o Flow-Diagramme als Grundlage der Personalführung und Entwicklung
- o Stellenprofile, Persönlichkeitsprofile o Arbeitsplatz- und Stellenbeschreibungen (Möglichkeiten und Grenzen)

o Digital Leadership - Agile Leadership

Soziale Kompetenzen

- o Mitarbeiter-Zielvereinbarungsgespräche
- o Kommunikation und Krisenmanagement in der Personalführung
- o Feedback und Feedbackschleifen
- o Teampsychologie: Rollen, Verhalten, Phasen
- o Veränderungspsychologie

Methodenkompetenzen:

- o Mitarbeiterbewertungssysteme
- o Systeme der Personalentwicklung
- o Schulungs- und Entwicklungsmatrix
- o Methoden der Teamentwicklung
- o Change Management

Teil Arbeitsrecht:

- o Einführung in das Arbeitsrecht
- o Von der Bewerbung bis zur Einstellung
- o Begründung, Änderung und Beendigung des Arbeitsverhältnisses
- o Besondere Formen des Arbeitsverhältnisses
- o Inhalt des Arbeitsverhältnisses o Mitbestimmung des Betriebsrats
- o Grundzüge des Tarifrechts

Lehr- und Lernmethoden

Seminaristischer Unterricht und Übung

Empfohlene Literaturliste

- Buckingham, Coffman, Erfolgreiche Führung gegen jede Regel, Campus Verlag,
 4.Auflage, 2012
- 2. Malik, Führen, Leisten, Leben Wirksames Management für eine neue Zeit, Campus Verlag, 2006
- 3. Schulz von Thun, Miteinander Reden 1-3, rororo Verlag, 48. Auflage, 2010
- 4. Francis, Young, Mehr Erfolg im Team, Windmühle Verlag, 2009
- 5. Spitzer, Lernen. Gehirnforschung und die Schule des Lebens, Spektrum Verlag, 2009
- 6. Erpenbeck, von Rosenstiel (Hrsg.), Handbuch Kompetenzmessung, Schäffer Poeschel Verlag, 2. Auflage, 2007
- 7. Kotter, John, Leading Change, Harvard Business Review Press, Auflage new edition, 2012
- 8. Kahnemann, David, Schnelles Denken, Langsames Denken, Siedler Verlag, 24. Auflage 2012
- 9. Handbuch des Bauarbeitsrechts, Langenecker/Maurer, Werner Verlag 2004
- 10. Schaub Arbeitsrechtshandbuch, 17. Auflage 2017, Verlag C. H. Beck
- 11. Küttner Personalbuch 2018, Verlag C. H. Beck

OW-28 PRAXISMODUL

Modul Nr.	W-28
Modulverantwortliche/r	Prof. Peter Schmieder
Kursnummer und Kursname	W6101 Praxisseminar
	W6102 Projektmanagement
	W6103 Präsentations- und Verhandlungstechnik
Lehrende	Prof. Peter Schmieder
Semester	6
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	PLV
Niveau	Undergraduate
SWS	6
ECTS	6
Workload	Präsenzzeit: 90 Stunden
	Selbststudium: 45 Stunden
	Virtueller Anteil: 45 Stunden
	Gesamt: 180 Stunden
Prüfungsarten	Näheres regelt der Studienplan
Dauer der Modulprüfung	Näheres regelt der Studienplan
Gewichtung der Note	6/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Kurs Praxisseminar:

Die Studierenden verstehen und bewerten von fachlichen, persönlichen und methodischen Kompetenzen durchdirektem Bezug zur praktischen Tätigkeit in Unternehmen

und Betrieben. Weiter analysieren die Studierenden betriebliche Anforderungen und daraus abzuleitenden Handlungskompetenzen in einer Ablauf- und Aufbauorganisation.

Kurs Projektmanagement:

Die Studierenden lernen die Methoden des Projektmanagements kennen und wenden diese in konkreten Fallbeispielen an. Die Studierenden vergleichen industrielle Anwendungsbeispiele und differenzieren die Itinerarien des Projektmanagements. Sie überprüfen und bewerten die Projektergebnisse in einer Soll-Ist Analyse.

Kurs Präsentations- und Verhandlungstechnik:

Die Studierenden lernen die Grundkompetenzen und Systeme der Präsentations-, und Verhandlungstechniken verstehen und anwenden. Die Fähigkeit zur Erstellung einer Gliederung sowie der Aufbau einer Ergebnispräsentation für die Managementebene wird erarbeitet und eingeübt. Schließlich werden Prinzipien und Methoden von Verhandlungstechniken in Case Studies analysiert und bewertet.

Verwendbarkeit in diesem und in anderen Studiengängen

Das Modul ist in jedem ingenieursrelevanten Studiengang (insbesondere MB, ET/MT und deren Spezialisierungen) verwendbar.

Zugangs- bzw. empfohlene Voraussetzungen

Der Eintritt in das praktische Studiensemester setzt voraus, dass mindestens 90 ECTS-Kreditpunkte erzielt wurden.

Inhalt

Kurs Praxisseminar:

- o Erstellung und Ausführung einer Pitch-Präsentation auf Basis eines Berichtes zu Tätigkeiten und Aufgaben des Studierenden im Rahmen des Betriebspraktikums.
- o Vertiefende Einblicke über Entwicklungen und Verfahren und Fertigkeiten, die in den verschiedenen Unternehmen durchgeführt werden.
- o Überblick zu verschiedenen Firmen und deren geforderten Kernkompetenzen und Schwerpunkten.

Kurs Projektmanagement:

- o Selbständig ein Projekt strukturieren
- o Zeitplan mit realistischen Meilensteinen
- o Fortschrittskontrolle
- o Aufstellung realistischer Projektziele mit Ressourceneinsatz und Kosten-, Nutzenanalyse.
- o Planungsschritte im Projekt
- o Steuerung des Projektablaufs
- o Kontrolle der Zielerreichung
- o Fallback-Lösungen für Notfallsituationen.

Kurs Präsentations- und Verhandlungstechnik:

- o Was erwartet ein Manager von einer Entscheidungsvorlage?
- o Grundsätzlicher Aufbau einer Entscheidungsvorlage
- o Berichtsstil vs. Erlebniserzählung

- o Grundlagen der Kommunikation
- o Zielgruppenadäquate Kommunikationsinstrumente
- o Teilnehmer und Rollen bei Verhandlungen
- o Menschen und Probleme getrennt voneinander behandeln
- o Auf Interessen konzentrieren, nicht auf Positionen
- o Optionen zum beiderseitigen Vorteil entwickeln
- o Anwendung neutraler Beurteilungskriterien
- o Tipps und Tricks zur Bearbeitung von Fallstudien mit Rollenvorgaben, mit Ergebnispräsentation, Q&A, Verhandlungsgesprächen

Lehr- und Lernmethoden

Seminaristischer Unterricht mit Case Studies und studentischer Fallberatung

Empfohlene Literaturliste

- Harold Kerzner, Projektmanagement Ein systemorientierter Ansatz zur Planung und Steuerung, mitp-Verlag, Landsberg, 2008
- 2. Hans-Ulrich Küper, Projektmanagement als kundenorientierte Führungskonzeption, Schäffer- Poeschel Verlag, Stuttgart, 2007
- 3. Bernd Madauss, Handbuch Projektmanagement, Schäffer-Poeschel Verlag, Stuttgart, 4. Auflage, 2004
- Fisher, Ury, Patton, Das Harvard-Konzept, Campus Verlag, Frankfurt New York,
 23. Auflage, 2009
- 5. James M. Citrin, Richard A. Smith, Christine Stimpel, Das Geheimnis außergewöhnlich erfolgreicher Karrieren, Campus Verlag, Frankfurt – New York

- 6. Louise Mauffette-Leenders, Learning with Cases, Ivey, London Ontario
- 7. ECCH Case Studies, ecch UK, Cranfield UK

○W-29 INDUSTRIEPRAKTIKUM

Modul Nr.	W-29
Modulverantwortliche/r	Prof. Dr. Gerald Fütterer
Kursnummer und Kursname	W6104 Praktikum
Lehrende	Prof. Dr. Gerald Fütterer
	Prof. Peter Schmieder
Semester	6
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	0
ECTS	24
Workload	Präsenzzeit: 720 Stunden
	Gesamt: 720 Stunden
Gewichtung der Note	24/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Synthetisierung sämtlicher Kompetenzfelder (Persönliche Kompetenzen, Soziale Kompetenzen, Fachliche Kompetenzen und Methodische Kompetenzen):

Ziel ist, den Studierenden die Gelegenheit zu geben, das von Ihnen erworbene Wissen in der Praxis anzuwenden und gleichzeitig die betrieblichen Abläufe in einem Unternehmen kennenzulernen.

Die in den vorangegangenen Lehrmodulen vermittelten theoretischen Inhalte werden in der betrieblichen Praxis angewandt und im Praxismodul bewertet.

Synthese auf die spätere berufliche Tätigkeit

Durch die Einbindung in das Tagesgeschäft und das Team/die Abteilung eines Wirtschaftsunternehmens soll den Studierenden zudem eine Gelegenheit geboten werden, ihre Personal- und Soft-Skills in den Bereichen Kooperations- und Kommunikationsfähigkeit, Teamarbeit und Präsentationstechnik aktiv zu üben. Damit sollen die Studierenden auf die Qualifikationsanforderung und Kompetenzmatrix potentieller Arbeitgeber vorbereitet werden. Ein Qualifikations-Ziel bei der Erweiterung der Methoden-Kompetenz ist das Erlernen des Zeitmanagements in Industrieprojekten.

Verwendbarkeit in diesem und in anderen Studiengängen

Anerkennungsfähigkeit in ingenieursrelevanten Studiengängen, je nach Zuschnitt der beruflichen Tätigkeit und erworbenen Kompetenzen im Praktikum

Zugangs- bzw. empfohlene Voraussetzungen

Der Eintritt in das praktische Studiensemester setzt voraus, dass mindestens 90 ECTS-Kreditpunkte erzielt wurden.

Inhalt

Praktische Tätigkeit in einem Industrieunternehmen oder sonstigen geeigneten Ausbildungsbetrieb für die Dauer von 18 Wochen. Die Studierenden werden in aktuelle Projekte des Betriebes eingebunden. Individuelle Themenstellung können sich dabei aus folgenden Bereichen ergeben:

- o Geschäftsfeld- und Produktplanung, Business Development
- o Projektierung von Anlagen, Projektleitung und Projektcontrolling
- o Innovations- und Technologiemanagement,
- o Technische Planung und Controlling,

- o Technischer Einkauf, Organisation und Logistik,
- o Industriegütermarketing,
- o Vertriebsingenieurwesen,
- o Controlling für technische Fachbereiche,
- o Assistenz der Geschäftsleitung
- o Prozessmanagement

Lehr- und Lernmethoden

Learning on the job, ergänzendes Selbststudium, Recherche, Problem-Analyse, Informations- und Wissensaustausch zw. den Studierenden (2-te PLV-Woche)

Empfohlene Literaturliste

keine

W-30 UNTERNEHMENSFÜHRUNG

Modul Nr.	W-30
Modulverantwortliche/r	Prof. Dr. Oliver Neumann
Schwerpunkt	Schwerpunkt: Classic - Unternehmensorganisation
Kursnummer und Kursname	W7103 Management - und Entscheidungstechniken
	W7104 Gründungsmanagement und Businessplan
Lehrende	Prof. Dr. Oliver Neumann
	Carina Forman
Semester	7
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	nach Bedarf
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	6
ECTS	6
Workload	Präsenzzeit: 90 Stunden
	Selbststudium: 60 Stunden
	Virtueller Anteil: 30 Stunden
	Gesamt: 180 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	6/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Ein Unternehmen zu führen bedeutet vorrangig, die richtigen Entscheidungen zu treffen und gravierende Fehlentscheidungen nach Möglichkeit zu vermeiden. Die wachsenden

beruflichen Herausforderungen erfordern eine stetige Weiterentwicklung und Anpassung der Qualifikation. Im Modul Unternehmensführung werden für verschiedene Einsatzgebiete unternehmerische Kenntnisse vermittelt. Ein Unternehmen zu führen bedeutet vorrangig, die richtigen Entscheidungen zu treffen und gravierende Fehlentscheidungen nach Möglichkeit zu vermeiden. Ziel des Moduls ist es deshalb dem Studierenden das notwendige Wissen zu vermitteln, dass es ihm ermöglicht, konkrete Strukturen und Prozesse eines Unternehmens und dessen Umfeldes zu analysieren und darauf basierend robuste unternehmerische Entscheidungen in einem ganzheitlichen Prozess zu treffen.

Die Wichtigkeit einer detaillierten Unternehmensplanung soll zudem an Hand des Beispiels Gründungsmanagement verdeutlicht werden. Dabei soll auch für das Thema Existenzgründung sensibilisiert und motiviert werden. Dem Studierenden soll ferner die Möglichkeit geboten werden, durch das Erstellen eines individuellen Businessplans im Rahmen eines Gruppenprojektes das vermittelte Wissen anzuwenden, zu trainieren und dadurch die Vorgehensweise, mögliche Probleme und Grenzen der Unternehmensplanung an einem praxisnahen Beispiel nachzuvollziehen. Das Gruppenprojekt umfasst die Gesamtplanung einer Geschäftsidee von der Ideenfindung, der Informationsbeschaffung bis hin zur Erstellung eines detaillierten Geschäftsplanes. Das Engagement der Teilnehmer und die Gruppendynamik während des Projektes tragen dabei entscheidend zum Lernerfolg bei.

Qualifikationsziele

Im Einzelnen haben die Studierenden nach Abschluss des Moduls die folgenden Lernziele erreicht:

Fachkompetenz

Die Studierenden sind in der Lage, im Rahmen des Ideengenerierung (Design Thinking Prozesses) iterativ Lösungen für eine Problemstellung zu generieren und zu evaluieren. Sie können aus einem Methodenset auswählen und an geeigneter Stelle Problemstellungen hinterfragen und analysieren. Sie können ihre Ideen in Prototypen umsetzen und diese mit ihren Nutzern testen und evaluieren.

Methodenkompetenz

Die Studierenden sind befähigt, Methoden zu den geeigneten Phasen zuzuordnen und anzuwenden. Die Lernmethoden dazu: Interaktives Seminar, Problem Based Learning,

Referate/ Präsentationen zu speziellen Aspekten, Selbstorganisation, Coaching-Sitzungen mit dem Dozenten. Das Ziel, bereits vorhandene Wissen mit zu integrieren und mit hohen Kommunikationsbereitschaft Lösungen zu finden.

Sozialkompetenz

Die Studierenden verfügen über Diskussionsvermögen, Teamfähigkeit und Kritikfähigkeit. Sie sind in der Lage ihre Stärken in den Entwicklungsprozess und Geschäftsmodelldesign einzubringen und verfügen über ein kreatives Selbstbewusstsein. Durch die Analyse aktueller Unternehmenssituationen in Teamarbeit erfolgt ein vertiefter Austausch über unterschiedliche strategische Konzepte zur Unternehmensführung im Spannungsfeld von finanzieller Wertorientierung und werteorientierter Unternehmensführung. Durch Heterogenität der Gruppenmeinungen und Standpunkte in diesen Diskussionen wird die Konflikt- und Kritikfähigkeit geschult.

Persönliche Kompetenz

Die Studierenden haben ein Startup-Mindset, das sie befähigt Problemstellungen zu erfassen und nutzerzentrierte Lösungen zu entwickeln. Im Fall einer eignen Geschäftsidee oder Problemstellung konnten Sie ihr Verständnis für den Nutzer erweitern.

Verwendbarkeit in diesem Studiengang

W-30 Unternehmensführung

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbarkeit für fachähnliche Studiengänge, W-31 Produktion und Logistik / W-34 Produktion und Logistik, W-32 Betriebliche Organisation, Einkauf und Vertrieb

Zugangs- bzw. empfohlene Voraussetzungen

W4105 Innovationsmanagement

W5106 Unternehmensnachfolge und Business Simulation

Inhalt

Der Kurs baut auf den Grundlagen der Unternehmensführung auf und motiviert die Studierenden, ihre Kenntnisse auf konkrete Fallbeispiele der Unternehmensgründung zu übertragen. Dabei kommen analytische Instrumente und Lösungsansätze aus der Entrepreneurship-Forschung und verschiedenen unternehmerischen Funktionen zum Einsatz. Ferner werden die unternehmerischen Entscheidungswege und die Konsequenzen unternehmerischen Handelns mit Fokus auf Unternehmen diverser Branchen aufgezeigt.

Kurs Management- und Entscheidungstechnik

Der Kurs baut auf den Grundlagen der Unternehmensführung auf und motiviert die Studierenden, ihre Kenntnisse auf konkrete Fallbeispiele der Unternehmensführung zu übertragen. Dabei kommen analytische Instrumente und Lösungsansätze aus dem Bereich Unternehmensführung in verschiedenen unternehmerischen Funktionen zum Einsatz. Ferner werden die unternehmerischen Entscheidungswege und die Konsequenzen unternehmerischen Handelns mit Fokus auf Unternehmen diverser Branchen aufgezeigt.

- o Grundbegriffe und System der Unternehmensführung
- o Verknüpfung mit der Normativen Unternehmensführung
- Wertorientierte Unternehmensführung
- Marktorientierte Unternehmensführung
- o Ressourcenorientierte Unternehmensführung
- Strategieimplementierung
- o Führung des Wandels
- Innovationsstrategien

Kurs Gründungsmanagement und Businessplan

- o Gründungsrelevante Kompetenzen
- o Ideenfindung und Evaluation von Geschäftsideen
- o Aufbau und Inhalte von Businessplänen

- Geschäftsmodelle
- o Venture Capital und Unternehmensfinanzierung
- o Finanzplanung, Szenariobildung und Sensitivitätsanalyse
- o Investitionsplanung und Anlagespiegel
- o Personalplanung
- o öffentliche Fördermittel
- o Möglichkeiten der Haftungsbegrenzung
- Gründerhaftung

Lehr- und Lernmethoden

Vorlesung mit Übungen, Seminar, Schreibwerkstatt, Präsentationen, Diskussionen

Vermittlung der Grundlagen durch fallbezogene Darstellung. Systematische Darstellung der Theorie mit Methodentransfer, Schaubildern und Fallbeispielen.

Vorlesung im seminaristischen Stil, Gruppenarbeiten, Gruppenpräsentationen, Übungen, Gruppenarbeit, Selbststudium mit Materialien auf i-Learn (Moodle)

Besonderes

Selbststudium mit Materialien auf i-Learn

Einreichung von Übungsaufgaben

Gastvorträgen von Unternehmen aus der Berufsgruppe

▶ W7103 MANAGEMENT - UND ENTSCHEIDUNGS-TECHNIKEN

Qualifikations-Ziele

Fachkompetenz

Im Rahmen der angebotenen Lehrveranstaltung und der 4 Kompetenzbereiche die auch als Schlüsselkompetenzen beschrieben werden sind folgende Schwerpunkte im Rahmen der Unternehmensführung angestrebt;

- o Die geforderten Qualifikationsziele und Kompetenzen werden durch die praxisnahe Zusammenführung der einzelnen Komponenten angestrebt.
- Da die Führung eines Unternehmens und damit zusammenhängende Entscheidungen seit jeher äußerst komplex ist und zu dem die soziale Verantwortung der Führungskräfte immer mehr in den Vordergrund rückt, wird nach den nachstehenden Schwerpunkten die Lehrveranstaltung
- o Die großen Herausforderungen für alle Unternehmen/Organisation
- o Der stetige Wandel der lernenden Organisation im Rahmen der Dynaxität
- Welche generellen Grundlagen sind für die Findung der Entscheidungen zu beachten, insbesondere die Wirkung von Kohäsion, sozialen Gruppen etc.
- Welche Managementtools helfen den Beteiligten in den jeweiligen Geschäftsprozessen um die Herausforderungen zu bewältigen

Methodenkompetenz

Die Studierenden sind befähigt, Methoden zu den geeigneten Phasen zuzuordnen und anzuwenden. Die Lernmethoden dazu: Interaktives Seminar, Problem Based Learning, Referate/ Präsentationen zu speziellen Aspekten, Selbstorganisation, Coaching-Sitzungen mit dem Dozenten. Das Ziel, bereits vorhandene Wissen mit zu integrieren und mit hohen Kommunikationsbereitschaft Lösungen zu finden.

Dazu gehört

Strategien definieren

- o Konzepte entwickeln und den Weg zur Implementierung zu bestimmen
- o Kontinuierlich die Effizienz (Wertschöpfung) im Blick zu behalten
- Kreativ und innovativ sein
- Mitarbeiter zielgerichtet zu steuern, d.h. im Vordergrund die Teamarbeit zu forcieren

Sozialkompetenz

Die Studierenden verfügen über Diskussionsvermögen, Teamfähigkeit und Kritikfähigkeit. Sie sind in der Lage ihre Stärken in den Entwicklungsprozess und Geschäftsmodelldesign einzubringen und verfügen über ein kreatives Selbstbewusstsein. Durch die Analyse aktueller Unternehmenssituationen in Teamarbeit erfolgt ein vertiefter Austausch über unterschiedliche strategische Konzepte zur Unternehmensführung im Spannungsfeld von finanzieller Wertorientierung und werteorientierter Unternehmensführung. Durch Heterogenität der Gruppenmeinungen und Standpunkte in diesen Diskussionen wird die Konflikt- und Kritikfähigkeit geschult.

Persönliche Kompetenz

Die vorgestellten Konzepte und die Unternehmensbeispiele ermöglichen einen großen Interpretationsraum für mögliche Lösungsalternativen. Jeder Studierende muss eigenständig Strategiemöglichkeiten der Unternehmensführung entwickeln und die Auswirkungen reflektieren. In Form von Gruppenarbeit werden ausgewählte Managementtools vorbereitet und im Rahmen der Lehrveranstaltungen präsentiert. Die Studierenden haben zudem ein Unternehmer-Mindset, das sie befähigt disruptive Problemstellungen zu erfassen und nutzerzentrierte Lösungen zu entwickeln.

Inhalt

Der Kurs baut auf den Grundlagen der Unternehmensführung auf und motiviert die Studierenden, ihre Kenntnisse auf konkrete Fallbeispiele der Unternehmensführung zu übertragen. Dabei kommen analytische Instrumente und Lösungsansätze aus dem Bereich Unternehmensführung in verschiedenen unternehmerischen Funktionen zum Einsatz. Ferner werden die unternehmerischen Entscheidungswege und die Konsequenzen unternehmerischen Handelns mit Fokus auf Unternehmen diverser Branchen aufgezeigt.

- o Grundbegriffe und System der Unternehmensführung
- o Verknüpfung mit der Normativen Unternehmensführung
- o Wertorientierte Unternehmensführung
- o Marktorientierte Unternehmensführung
- o Ressourcenorientierte Unternehmensführung
- o Strategieimplementierung
- o Führung des Wandels
- o Innovationsstrategien

Zugangs- bzw. empfohlene Voraussetzungen

Keine

Prüfungsarten

Teil der Modulprüfung

Methoden

Vorlesung mit Übungen, Seminar, Schreibwerkstatt, Präsentationen, Diskussionen, Vermittlung der Grundlagen durch fallbezogene Darstellung. Systematische Darstellung der Theorie mit Methodentransfer, Schaubildern und Fallbeispielen.

Besonderes

Selbststudium mit Materialien auf ILearn

Einreichung von Übungsaufgaben

Gastvorträgen von Unternehmen aus der Berufsgruppe

Empfohlene Literaturliste

- Bartscher, T., Stöckl, J.: Veränderungen erfolgreich managen? Ein Handbuch für Change Manager und Interne Berater, Haufe-Lexware, 1. Auflage 2011, ISBN 978-3-648-01088-4
- 2. Bamberg, G., Coenenberg, A., Krapp, M., Betriebswirtschaftliche Entscheidungslehre, Vahlen Verlag, 14. Auflage 2008, ISBN 978-3800635061
- 3. Schawel, C., Billing, F.: Top 100 Management Tools, Gabler Verlag Wiesbaden, 2004, ISBN 3-409-12595-7

W7104 GRÜNDUNGSMANAGEMENT UND BUSI-NESSPLAN

Qualifikations-Ziele

Die Wichtigkeit einer detaillierten Unternehmensplanung wird durch Beispiele verdeutlicht. Dabei wird für das Thema Existenzgründung sensibilisiert und motiviert. Den Studierenden wird ferner die Möglichkeit geboten, durch das Erstellen eines individuellen Businessplans im Rahmen eines Gruppenprojektes das vermittelte Wissen anzuwenden, zu trainieren und dadurch die Vorgehensweise, mögliche Probleme und Grenzen der Unternehmensplanung an einem praxisnahen Beispiel nachzuvollziehen. Dieser Kurs vermittelt die Startvorrichtung anhand unternehmerischer Grundlagen, Managementkenntnisse und persönlicher Schlüsselqualifikationen für den Start in das unternehmerische Rennen und sensibilisiert zu Themen der Selbstständigkeit und Existenzgründung. Neben theoretischem Wissen zur Entrepreneurship werden Kenntnisse zur Identifikation von Marktchancen und Geschäftsmodellen vermittelt. Erweiterung praktischer Kenntnisse aus dem Startprozess > von der Idee über das Produkt/Dienstleistung zum Geschäftsmodell. Das Gruppenprojekt umfasst die Gesamtplanung einer Geschäftsidee

von der Ideenfindung, der Informationsbeschaffung bis hin zur Erstellung eines detaillierten Geschäftsplanes. Das Engagement der Teilnehmer und die Gruppendynamik während des Projektes tragen dabei entscheidend zum Lernerfolg bei.

Fachkompetenz

Die Studierenden sind in der Lage, im Rahmen des Ideengenerierung (Design Thinking Prozesses, Where2Play-Methode) iterativ Lösungen für eine Problemstellung zu generieren und zu evaluieren. Sie können aus einem Methodenset auswählen und an geeigneter Stelle Problemstellungen hinterfragen und analysieren. Sie können ihre Ideen in Prototypen umsetzen und diese mit ihren Nutzern testen und evaluieren.

Methodenkompetenz

Die Studierenden sind befähigt, Methoden zu den geeigneten Phasen zuzuordnen und anzuwenden. Die Lernmethoden dazu: Interaktives Seminar, Problem Based Learning, Referate/ Präsentationen zu speziellen Aspekten, Selbstorganisation, Coaching-Sitzungen mit dem Dozenten. Das Ziel, bereits vorhandene Wissen mit zu integrieren und mit hohen Kommunikationsbereitschaft Lösungen zu finden.

Sozialkompetenz

Die Studierenden verfügen über Diskussionsvermögen, Teamfähigkeit und Kritikfähigkeit. Sie sind in der Lage ihre Stärken in den Entwicklungsprozess und Geschäftsmodelldesign einzubringen und verfügen über ein kreatives Selbstbewusstsein. Durch die Analyse aktueller Unternehmenssituationen in Teamarbeit erfolgt ein vertiefter Austausch über unterschiedliche strategische Konzepte zur Unternehmensführung im Spannungsfeld von finanzieller Wertorientierung und werteorientierter Unternehmensführung. Durch Heterogenität der Gruppenmeinungen und Standpunkte in diesen Diskussionen wird die Konflikt- und Kritikfähigkeit geschult.

Persönliche Kompetenz

Die vorgestellten Konzepte und die Unternehmensbeispiele ermöglichen einen großen Interpretationsraum für mögliche Lösungsalternativen. Jeder Studierende muss eigenständig Strategiemöglichkeiten der Unternehmensführung entwickeln und die Auswirkungen reflektieren. In Form von Gruppenarbeit werden ausgewählte Managementtools

vorbereitet und im Rahmen der Lehrveranstaltungen präsentiert. Die Studierenden haben zudem ein StartUp-Mindset, dass sie befähigt disruptive Problemstellungen zu erfassen und nutzerzentrierte Lösungen zu entwickeln.

Inhalt

Der Kurs baut auf den Grundlagen der Unternehmensführung auf und motiviert die Studierenden, ihre Kenntnisse auf konkrete Fallbeispiele der Unternehmensgründung zu übertragen. Dabei kommen analytische Instrumente und Lösungsansätze aus der Entrepreneurship-Forschung und verschiedenen unternehmerischen Funktionen zum Einsatz. Ferner werden die unternehmerischen Entscheidungswege und die Konsequenzen unternehmerischen Handelns mit Fokus auf Unternehmen diverser Branchen aufgezeigt.

- o Gründungsrelevante Kompetenzen
- o Ideenfindung und Evaluation von Geschäftsideen
- o Aufbau und Inhalte von Businessplänen
- Geschäftsmodelle
- o Venture Capital und Unternehmensfinanzierung
- o Finanzplanung, Szenariobildung und Sensitivitätsanalyse
- o Investitionsplanung und Anlagespiegel
- Personalplanung
- o öffentliche Fördermittel
- o Möglichkeiten der Haftungsbegrenzung
- o Gründerhaftung
- Praktische Anwendung des theoretischen Wissens bei der Erstellung eines Businessplanes als Gruppenprojekt

Zugangs- bzw. empfohlene Voraussetzungen

Keine

Prüfungsarten

Teil der Modulprüfung

Methoden

i-learn zur Ergänzung

Präsentationen, Folien, Tafel, Fallstudien, Businessplan

Vorlesung mit Übungen, Seminar, Schreibwerkstatt, Diskussionen

Besonderes

Selbststudium mit Materialien auf i-Learn

Einreichung von Übungsaufgaben

Empfohlene Literaturliste

- Koch, Wolfgang / Wegmann, Jürgen (2002): Praktiker-Handbuch Due Diligence, Analyse mittelständischer Unternehmen, 2. überarbeitete und aktualisierte Auflage, Schäffer-Poeschel Verlag, Stuttgart 2002.
- Kreditanstalt für Wiederaufbau (KfW)-Akademie, (2004): Finanzierungsmöglichkeiten der KfW bei Unternehmensübernahmen und Beteiligungen, Frankfurt a. M. 2004, S. 32-34
- 3. Timmons, Jeffrey A.: New venture creation, McGraw-Hill Verlag, Boston, 2004
- 4. Sahlman, William A.: The entrepreneurial venture, Havard Business School Press, Boston, 1999
- 5. Dowling, Michael J.: Gründungsmanagement, Springer Verlag, Berlin, 2003

- 6. Bernd Fischl / Stefan Wagner: Der perfekte Businessplan, 2010 Verlag Franz Vahlen GmbH
- 7. C. Bayerl; 30 Minuten für Kreativitätstechniken; GABAL Verlag GmbH; 3. Auflage 2007; Offenbach
- 8. G. Bayer; G.R. Berrit; Diagnose der Innovationbedingungen im Unternehmen; Digitale Fachbibliothek Innovationsmanagement; Symposium Publishing GmbH; 2007
- 9. A. Blumenschein; I.U. Ehlers; Ideen managen; Rosenberger Fachverlag; Leonberg; 2007
- 10. BPW Nordbayern GmbH: Schritt für Schritt wachsen finanzieren gründen planen; Teilnehmerhandbuch 2020; 4. überarbeitete Auflage
- 11. Pott , Oliver, Pott , André: Entrepreneurship, Unternehmensgründung, Businessplan und Finanzierung, Rechtsformen und gewerblicher Rechtsschutz, Poeschl-Verlag, 2017
- 12. A. Förster; P. Kreuz; Different Thinking; Redline Wirtschaft; Frankfurt 2005
- 13. Engelen Andreas: Corporate Entrepreneurship, Taschenbuch, 2014, Gabler
- 14. Fritsch Michael: Entrepreneurship, Theorie, Empirie, Politik, Engelen, Bachmann, Springer, 2017

OW-31 PRODUKTION UND LOGISTIK

Modul Nr.	W-31
Modulverantwortliche/r	Prof. Dr. Michael Drexl
Schwerpunkt	Generell
Kursnummer und Kursname	W7105 Produktion und Logistik
Lehrende	Prof. Dr. Michael Drexl
Semester	7
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210 ECTS
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Das Modul gibt einen Überblick über fundamentale Aspekte von Produktion und Logistik.

Nach erfolgreichem Abschluss des Moduls verfügen die Studenten über folgende Kompetenzen:

Fachkompetenz

Die Studenten kennen wesentliche Strukturen, Abläufe und Gestaltungselemente der Produktion und der Beschaffungs-, Produktions-, Distributions- und Entsorgungslogistik.

Methodenkompetenz

Sie beherrschen grundlegende Analyse-, Modellierungs- und Lösungsverfahren für wesentliche einschlägige betriebliche Planungs- und Entscheidungsprobleme.

Personale Kompetenz

Sie kennen die Möglichkeiten und Grenzen des Einsatzes quantitativer Methoden in Produktion und Logistik.

Soziale Kompetenz

Sie bereiten die Ergebnisse von Planungsrechnungen für Entscheider auf und präsentieren die Resultate zielgruppenorientiert.

Verwendbarkeit in diesem Studiengang

W-33 Optimierung und Simulation

Verwendbarkeit in diesem und in anderen Studiengängen

Das Modul vermittelt konkrete Anwendungen für die im Modul "Optimierung und Simulation" behandelten Modellierungs- und Lösungsverfahren.

Zugangs- bzw. empfohlene Voraussetzungen

Grundkenntnisse der Betriebs- und Volkswirtschaftslehre

Kenntnisse in Differential- und Integralrechnung mehrerer Veränderlicher, in Wahrscheinlichkeitsrechnung und Statistik, in Linearer und Gemischt-Ganzzahliger Optimierung

W1106 Grundlagen BWL/VWL

W-01 Mathematische Grundlagen

W-02 Grundlagen der Ingenieurmathematik

W4107 Statistik

W-24 Operations Research

Inhalt

Es wird ein Überblick gegeben über zentrale Aufgabenfelder und Problemstellungen der Produktion und der Logistik aus Sicht der quantitativen Betriebswirtschaftslehre. Grundlegende Methoden zur Analyse, Modellierung und Lösung quantitativer betrieblicher Planungs- und Entscheidungsprobleme werden vorgestellt.

Im Einzelnen werden folgende Themenbereiche behandelt:

- o Inner- und überbetriebliche Standortplanung
- Distributionsmanagement
- o Deterministisches und stochastisches Bestandsmanagement
- Strategische, taktische und operative Produktionsplanung
- o Mittel- und kurzfristige Personaleinsatzplanung
- Maschinenbelegungsplanung
- Transportlogistik

Lehr- und Lernmethoden

Seminaristischer Unterricht, Hausübungen

Besonderes

keine Angabe

- 1. Thonemann (2015): Operations Management, Pearson, Hallbergmoos
- 2. Nahmias/Olsen (2015): Production and Operations Analysis, Waveland, Long Grove
- 3. Chopra/Meindl (2014): Supply Chain Management, Pearson, Hallbergmoos

W-32 BETRIEBLICHE ORGANISATION, EINKAUF UND VERTRIEB

Modul Nr.	W-32
Modulverantwortliche/r	Prof. Dr. Michael Drexl
	Schwerpunkt: Classic - Unternehmensorganisation
Kursnummer und Kursname	W7106 Betriebliche Organisation, Einkauf und Ver-
	trieb
Lehrende	Prof. Dr. Michael Drexl
Semester	7
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210 ECTS
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Lernergebnisse/Qualifikationsziele:

Das Modul gibt einen Überblick über grundlegende Aspekte der betrieblichen Organisation, des Einkaufs und des Vertriebs.

Nach erfolgreichem Abschluss des Moduls verfügen die Studenten über folgende Kompetenzen:

Fachkompetenz

Die Studenten kennen wesentliche Strukturen, Abläufe und Gestaltungselemente der betrieblichen Organisation sowie des Einkaufs und Vertriebs der betrieblichen Leistungen.

Methodenkompetenz

Sie beherrschen grundlegende Analyse-, Modellierungs- und Lösungsverfahren für wesentliche einschlägige betriebliche Planungs- und Entscheidungsprobleme.

Personale Kompetenz

Sie kennen die Möglichkeiten und Grenzen des Einsatzes quantitativer Methoden in Einkauf und Vertrieb.

Soziale Kompetenz

Sie bereiten Analyse- und Optimierungsergebnisse für Entscheider auf und präsentieren die Resultate zielgruppenorientiert.

Verwendbarkeit in diesem Studiengang

W-33 Optimierung und Simulation

Verwendbarkeit in diesem und in anderen Studiengängen

Das Modul vermittelt konkrete Anwendungen für die im Modul "Optimierung und Simulation" behandelten Modellierungs- und Lösungsverfahren.

Zugangs- bzw. empfohlene Voraussetzungen

Grundkenntnisse der Betriebs- und Volkswirtschaftslehre

Kenntnisse in Differential- und Integralrechnung mehrerer Veränderlicher, in Wahrscheinlichkeitsrechnung und Statistik, in Linearer und Gemischt-Ganzzahliger Optimierung

W1106 Grundlagen BWL/VWL

W-01 Mathematische Grundlagen

W-02 Grundlagen der Ingenieurmathematik

W4107 Statistik

W-24 Operations Research

Inhalt

Es wird ein Überblick gegeben über zentrale Aufgabenfelder und Problemstellungen der inner- und über- bzw. zwischenbetrieblichen Organisation, der Beschaffung und des Einkaufs von Sachgütern und Dienstleistungen sowie des Vertriebs der betrieblichen Leistungen aus Sicht der quantitativen Betriebswirtschaftslehre. Grundlegende Methoden zur Analyse, Modellierung und Lösung entsprechender betrieblicher Planungs- und Entscheidungsprobleme werden vorgestellt.

Im Einzelnen werden folgende Themenbereiche behandelt:

- o Aufbau- und Ablauforganisation von Unternehmen
- Struktur- und Performanceanalyse sowie (Re)Design und Optimierung betrieblicher Leistungserstellungsprozesse
- o Qualitative und quantitative Nachfrageprognosen
- Beschaffungs- und Einkaufsmanagement
- o Revenue Management
- o Supply Chain Management
- Behavioural Operations Management

Lehr- und Lernmethoden

Seminaristischer Unterricht, Hausübungen

Besonderes

keine Angabe

- 1. Thommen (2007): Betriebswirtschaftslehre, Versus, Zürich
- 2. Thonemann (2015): Operations Management, Pearson, Hallbergmoos
- 3. Wannenwetsch (2014): Integrierte Materialwirtschaft, Logistik und Beschaffung. Springer Vieweg, Berlin

W-33 OPTIMIERUNG UND SIMULATION

Modul Nr.	W-33
Modulverantwortliche/r	Prof. Dr. Michael Drexl
	Business Analytics
Kursnummer und Kursname	W7113 Modellbasierte Optimierung in der Praxis
	W7114 Simulation von Produktions- und Logistiksys-
	temen
Lehrende	Prof. Dr. Michael Drexl
	Prof. Dr. Stephan Scheuerer
Semester	7
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	6
ECTS	6
Workload	Präsenzzeit: 90 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 180 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	6/210 ECTS
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Das Modul liefert anwendungsbezogenes Wissen und Methodenkompetenz zur Modellierung und algorithmengestützter Analyse und Lösung wesentlicher betrieblicher Planungs- und Entscheidungsprobleme.

Lernergebnisse/Qualifikationsziele:

Nach erfolgreichem Abschluss des Moduls verfügen die Studenten über folgende Kompetenzen:

Fachkompetenz

Sie kennen und definieren wesentliche Klassen mathematischer Optimierungsprobleme.

Methodenkompetenz

Sie wenden fortgeschrittene Techniken zur Modellierung unterschiedlicher Arten von mathematischen Optimierungsproblemen an.

Sie nutzen komplexe Verfahren zur Lösung der aufgestellten Modelle.

Sie setzen professionelle Optimierungs- und Simulationssoftware selbständig ein.

Sie beurteilen die Lösbarkeit von Modellen und Problemformulierungen und wählen geeignete Lösungsmethoden aus.

Sie evaluieren Optimierungs- und Simulationsergebnisse, insbesondere im Hinblick auf Sensitivität und Robustheit und leiten aus Ergebnissen konkrete Handlungsempfehlungen für betriebswirtschaftliche Entscheider ab.

Personale Kompetenz

Sie kennen die Möglichkeiten und Grenzen von Optimierung und Simulation.

Soziale Kompetenz

Sie bereiten Ergebnisse von Optimierungs- und Simulationsrechnungen für Entscheider auf und präsentieren Auswertungsergebnisse zielgruppenorientiert.

Verwendbarkeit in diesem Studiengang

W-36 Bachelormodul

Verwendbarkeit in diesem und in anderen Studiengängen

W-34 Produktion und Logistik

W-35 Data Science

Zugangs- bzw. empfohlene Voraussetzungen

Kenntnisse in Operations Research, deskriptiver und induktiver Statistik

W-24 Operations Research

W4107 Statistik

Inhalt

Eine Auswahl aus den Gebieten:

Modellierung Linearer, Nichtlinearer und Gemischt-Ganzzahliger Optimierungsprobleme

Wichtige allgemeine Klassen von Optimierungsproblemen (Rucksack-, Bin-Packing-, Set-Covering-, -Packing-, -Partitioning-, Zuschnitt-, Zuordnungs-, Reihenfolge-, Netz-fluß-, Routing- und Scheduling-Probleme)

- o Verfahren für Lineare Optimierungsprobleme mit spezieller Struktur
- o Ganzzahlige und kombinatorische Optimierung
- Dynamische Programmierung
- o Constraint Programming
- Nichtlineare Optimierung
- o Multi-Kriteria-Analyse
- Unscharfes Lineares Programmieren
- o Stochastische Optimierung
- Heuristiken, Meta- und Hyperheuristiken
- o Erzeugung von Zufallszahlen
- o Ereignisorientierte Simulation

- o Agentenbasierte Simulation
- System Dynamics
- o Statistische Auswertung von Simulationsergebnissen
- o Simulation und Industrie 4.0

Lehr- und Lernmethoden

Seminaristischer Unterricht, Hausübungen per Hand und mit dem Rechner

Besonderes

keine Angabe

- 1. Kallrath (2013): Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis, Springer Vieweg, Wiesbaden
- 2. Williams (1999): Model Building in Mathematical Programming, Wiley, Chichester
- 3. Waldmann/Helm (2016): Simulation stochastischer Systeme, Springer Gabler, Berlin

OW-34 PRODUKTION UND LOGISTIK

Modul Nr.	W-34
Modulverantwortliche/r	Prof. Dr. Michael Drexl
	Business Analytics
Kursnummer und Kursname	W7115 Produktion und Logistik
Lehrende	Prof. Dr. Michael Drexl
Semester	7
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsart	Schr. P. 90 Min.
Dauer der Modul-Prüfung	90 Min.
Gewichtung der Note	5/210 ECTS
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Das Modul gibt einen Überblick über fundamentale Aspekte von Produktion und Logistik.

Nach erfolgreichem Abschluß des Moduls verfügen die Studenten über folgende Kompetenzen:

Fachkompetenz

Die Studenten kennen wesentliche Strukturen, Abläufe und Gestaltungselemente der Produktion und der Beschaffungs-, Produktions-, Distributions- und Entsorgungslogistik.

Methodenkompetenz

Sie beherrschen grundlegende Analyse-, Modellierungs- und Lösungsverfahren für wesentliche einschlägige betriebliche Planungs- und Entscheidungsprobleme.

Personale Kompetenz

Sie kennen die Möglichkeiten und Grenzen des Einsatzes quantitativer Methoden in Produktion und Logistik.

Soziale Kompetenz

Sie bereiten die Ergebnisse von Planungsrechnungen für Entscheider auf und präsentieren die Resultate zielgruppenorientiert.

Verwendbarkeit in diesem und in anderen Studiengängen

Das Modul vermittelt konkrete Anwendungen für die im Modul "Optimierung und Simulation" behandelten Modellierungs- und Lösungsverfahren.

Zugangs- bzw. empfohlene Voraussetzungen

Grundkenntnisse der Betriebs- und Volkswirtschaftslehre

Kenntnisse in Differential- und Integralrechnung mehrerer Veränderlicher, in Wahrscheinlichkeitsrechnung und Statistik, in Linearer und Gemischt-Ganzzahliger Optimierung

W1106 Grundlagen BWL/VWL

W-01 Mathematische Grundlagen

W-02 Grundlagen der Ingenieurmathematik

W4107 Statistik

W-24 Operations Research

Inhalt

Es wird ein Überblick gegeben über zentrale Aufgabenfelder und Problemstellungen der Produktion und der Logistik aus Sicht der quantitativen Betriebswirtschaftslehre. Grundlegende Methoden zur Analyse, Modellierung und Lösung quantitativer betrieblicher Planungs- und Entscheidungsprobleme werden vorgestellt.

Im Einzelnen werden folgende Themenbereiche behandelt:

- o Inner- und überbetriebliche Standortplanung
- o Distributionsmanagement
- o Deterministisches und stochastisches Bestandsmanagement
- o Strategische, taktische und operative Produktionsplanung
- o Mittel- und kurzfristige Personaleinsatzplanung
- Maschinenbelegungsplanung
- Transportlogistik

Lehr- und Lernmethoden

Seminaristischer Unterricht, Hausübungen

Besonderes

keine Angabe

- 1. Thonemann (2015): Operations Management, Pearson, Hallbergmoos
- 2. Nahmias/Olsen (2015): Production and Operations Analysis, Waveland, Long Grove
- 3. Chopra/Meindl (2014): Supply Chain Management, Pearson, Hallbergmoos

OW-35 DATA SCIENCE

Modul Nr.	W-35
Modulverantwortliche/r	Prof. Dr. Michael Drexl
	Business Analytics
Kursnummer und Kursname	W7116 Data Science
Lehrende	Prof. Dr. Michael Drexl
Semester	7
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Das Modul liefert anwendungsbezogenes Wissen und Methodenkompetenz zu Data Science und Business Analytics. Dies ist im 21. Jahrhundert nicht nur für Wirtschaftsingenieure, sondern alle naturwissenschaftlichen, technischen sowie wirtschafts- und sozialwissenschaftlichen Fächer unverzichtbar.

Lernergebnisse/Qualifikationsziele:

Nach erfolgreichem Abschluss des Moduls verfügen die Studenten über folgende Kompetenzen:

Fachkompetenz

Sie kennen und definieren wesentliche Begriffe für Data Science und Analytics, nutzen selbständig einschlägige Methoden und Technologien und haben die Garbage-in-Garbage-out-Problematik verinnerlicht.

Methodenkompetenz

Sie wenden fortgeschrittene statistische Methoden zur Aufbereitung und Analyse von Daten an und leiten aus Analyseergebnissen Handlungsempfehlungen ab.

Personale Kompetenz

Sie besitzen ein Verständnis für moralische Aspekte beim Umgang mit Daten.

Soziale Kompetenz

Sie bereiten quantitative Informationen für Entscheider auf und stellen Auswertungsergebnisse zielgruppenorientiert dar.

Verwendbarkeit in diesem Studiengang

W-36 Bachelormodul

Verwendbarkeit in diesem und in anderen Studiengängen

Entsprechende weiterführende Studiengänge

Zugangs- bzw. empfohlene Voraussetzungen

W 4107 Statistik

Inhalt

- o Big Data, Analytics und die Rolle des "Data Scientist"
- Data Analytics Lifecycle
- Explorative Datenanalyse
- Klassische Verfahren der multivariaten Statistik: Eine Auswahl aus
 - Clusteranalyse
 - o Faktorenanalyse
 - o Regressionsanalyse
 - o Varianzanalyse
 - Diskriminanzanalyse
- Klassische Verfahren aus dem Gebiet des maschinellen Lernens: Eine Auswahl aus
 - o Nächster-Nachbar-Klassikation
 - o Naive Bayes-Klassikation
 - o Entscheidungsbäume
 - Assoziationsregeln
 - o Neuronale Netze
- o Technologien und Werkzeuge für Analytics: Software "R"
- o Ein Analytics-Projekt operationalisieren und Daten visualisieren:
 - Best Practices zur Operationalisierung eines Analytics-Projekts
 - Best Practices zur Planung und Erstellung effektiver Datenvisualisierung

Lehr- und Lernmethoden

Seminaristischer Unterricht, Hausübungen per Hand und mit dem Rechner

Besonderes

keine Angabe

- James/Witten/Hastie/Tibshirani (2015): An Introduction to Statistical Learning, Springer, New York
- 2. Lantz (2015): Machine Learning with R, Packt, Birmingham
- 3. Bishop (2011): Pattern Recognition and Machine Learning, Springer, New York

DW-36 BACHELORMODUL

Modul Nr.	W-36
Modulverantwortliche/r	Prof. Dr. Jutta Stirner
Kursnummer und Kursname	D7101 Bachelorseminar
	D7102 Bachelorthesis
Semester	7
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	0
ECTS	14
Workload	Präsenzzeit: 0 Stunden
	Selbststudium: 420 Stunden
	Gesamt: 420 Stunden
Prüfungsarten	mdl. P. 30 Min. und Bachelorarbeit
Gewichtung der Note	14/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die während des Studiums vermittelten Lehrinhalte werden in Form einer wissenschaftlichen Arbeit angewendet. Die Problemstellung ist innerhalb eines vorgegebenen Zeitrahmens selbständig zu analysieren, zu strukturieren und zu bearbeiten. Dies trainiert die Fähigkeit zur selbstständigen ingenieurmäßigen Bearbeitung eines größeren zusammenhängenden Themas und zur Aufbereitung der Ergebnisse in wissenschaftlicher Form. Schließlich soll dadurch die Fähigkeit zur transparenten Dokumentation der Ergebnisse erlangt werden.

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbarkeit für methodisches Arbeiten in aufbauenden Studiengängen

Zugangs- bzw. empfohlene Voraussetzungen

Formal:

Die Bachelorarbeit kann frühestens zu Beginn des ersten und sollte spätestens zu Beginn des zweiten auf das praktische Studiensemester folgende theoretische Semester begonnen werden.

Inhaltlich:

Der Studierende sollte alle für die umfassende Bearbeitung des gestellten Themas relevanten Kenntnisse aufweisen und diese in einer wissenschaftlichen Arbeit anwenden können

Inhalt

Individuelle Themenstellungen

Lehr- und Lernmethoden

Anleitung zu eigenständiger Arbeit nach wissenschaftlichen Methoden, Seminar

Besonderes

keine Angabe

Empfohlene Literaturliste

Je nach Fachgebiet.

- 1. Eco U. (2007), Wie man eine wissenschaftliche Abschlussarbeit schreibt, 12. Auflage, UTB, Heidelberg
- 2. Von Werder L. (1995), Grundkurs des wissenschaftlichen Schreibens, Schibri-Verlag, Milow (Uckerland)

