
Latency optimization and analysis through
the use of a high-speed packet IO framework

for high-bandwidth data processing
Marcel Glübert

Deggendorf Institute of Technology
Autonomous Systems / Driver Assistance Systems

Deggendorf, Germany
Email: marcel@gluebert.de

Abstract—The increasing data rate in Ethernet networks
requires increased performance to receive and process data.
The conventional Linux network stack encounters problems
when processing packets at line rate of 10Gps or higher. To
counteract this, specialized high-speed packet processing frame-
works are required to harness standard hardware’s full potential.
To understand the required background, the mechanisms of
modern network adapters and network stacks are explained
by reference to Unix-based operating systems. Furthermore,
the implementation of high-speed frameworks for receiving and
processing image data will be discussed. Finally, a measurement
will be performed, which shows the latency optimization by using
the Data Plane Development Kit.

Keywords— High-Speed Packet Processing, High-Bandwidth Data
reception, High-Speed Packet IO framework, DPDK, Data Plane
Development Kit, Linux Network Stack, Flow Bifurcation

I. INTRODUCTION

Autonomous driving is one of the key technologies for the future.
Accordingly, more and more vehicles are equipped with driver
assistance systems. A large number of sensors are required to enable
these systems to precisely detect their panoramic view. Imaging
sensors, such as cameras, are preferred for this purpose. These sensors
generate a large amount of raw data, which must be received and
processed by a control unit. Current analyses assume that future
autonomous vehicles will perceive their panoramic view by using
eight cameras. [1] A typical camera with a resolution of 2.5MP ,
a color depth of 12Bit, and a frame rate of 30fps generate a raw
sensor data rate of 105.47MB/s.

Camera

Camera

MDI Linux PC

CSI

10G Ethernet

CSI

Fig. 1. Hardware Setup

One of the core tasks in the development of driver assistance
systems is the acquisition of sensor data to develop and test these
systems. The acquired sensor data are recorded in vehicle computers.
The recordings are used to test new algorithms within a simulation
environment before this is done for a vehicle on the road. Figure 1
shows a typical measurement setup. Data acquisition is considerably
simplified if the data is transferred via a standardized interface. The
Gigabit Multimedia Serial Link (GMSL-2) has become a standard for

cameras. To record the sensor data, a Measurement Data Interface
(MDI) is required, which receives the GMSL-2 data of the Image
sensors, generates a timestamp and transmits the data by 10Gps
Ethernet Interface.

The traditional Linux network stack has a decreasing overhead
while receiving data. Within the Master Applied Research Project, a
high-speed packet IO framework has to be implemented. The goal of
the framework’s implementation is the latency optimization of data
reception, including the extraction of the image data. A comparison
of the Linux network with the framework has to be realized, which
shall clarify the optimization using a latency measurement.

II. PACKET PROCESSING

Ethernet packets have to be processed quickly to guarantee high
data throughput for high-bandwidth data communication. The Ether-
net standard (IEEE 802.3) specifies a maximum transfer unit (MTU)
of 1500 bytes. The MTU can extend to 9100 bytes with so-called
jumbo frames. Nevertheless, this is not specified in the Ethernet
standard. Some switches reject these packets at store and forwarding
due to the long processing time.

The processing time is particularly critical for small Ethernet
frames. The following example shall clarify how fast the software
has to work in order to process small packets on a 10Gbps interface.
At a fully loaded Ethernet interface with 64 bytes of user data,
14.88 million packets arrive each second. Accordingly, a packet must
be processed within 67.2ns. With a processor clock of 1.8GHz
one cycle corresponds to 0.55ns, so one Ethernet frame has to be
processed in 120 clock cycles.

This chapter gives an overview of typical software implementa-
tions for data reception with conventional hardware. In the beginning,
the Linux network stack is examined in detail, and it is shown
where problems with high data rates (10Gbps and higher) occur.
Afterward, two technologies are presented, which can accelerate
packet processing.

A. Linux Network Stack
Figure 2 shows the structure of data reception in the Linux network

stack. The network interface card (NIC) receives an Ethernet frame
and stores it in its Rx buffer. After that, the DMA engine of the
network card writes the frame to Random-Access Memory (RAM) via
PCIe using the Memory Management Unit (MMU, part of the CPU)
or to the CPU cache using Direct Cache Access (DCA). Provided
the driver of the network card has reserved enough DMA/DCA
descriptors (pointers to addresses in the RAM/cache) and that not
all of them are used. After data is loaded into the RAM, the NIC
generates an interrupt for the CPU. An event is stored in an event
queue of the kernel (soft IRQ), which is processed immediately, but



not directly. As soon as the soft IRQ is processed, the driver is called,
rejecting the received packet and passing it to the network stack
of the kernel (IP, TCP/UDP). The kernel processes the packet, and
firewall rules may be applied. If the application is currently blocking
or randomly polling for a packet, it is copied into the user space.
There are several context changes between user space and kernel
space. Interrupting and copying a packet from kernel space to user
space creates an overhead. At high data rates and small packet sizes,
packets can no longer be reliably processed and can be lost in the
worst-case. [2]

NIC
RX/TX queues

Kernel space
Ring buffers

User space
Application

DriverSocket

Fig. 2. Linux Network Stack structure

B. RDMA
Direct Memory Access (DMA) is an ability of a device to access

host memory directly, without the intervention of the CPU. Remote
Direct Memory Access (RDMA) is the ability of accessing (read,
write) memory on a remote machine without interrupting the pro-
cessing of the CPU(s) on that system. It has its origins in Infiniband
(technology for data centers comparable to Ethernet), where it is part
of the standard from the outset. In addition to Infiniband, RDMA
can also be operated via Ethernet, for which there are two competing
standards (iWRAP, RoCE). One of the RDMA Advantages is Zero-
copy. Applications can perform data transfers without the involvement
of the network software stack. Data is sent and received directly to
the buffers without being copied between the network layers. An
other advantage is bypassing the kernel. This implies that applications
can perform data transfers directly from user-space without kernel
involvement. All this is done with no CPU involvement. Applications
can access remote memory without consuming any CPU time in the
remote server. The remote memory server will be read without any
intervention from the remote process (or processor). Moreover, the
caches of the remote CPU will not be filled with the accessed memory
content. [3]

The different RDMA protocols and the layers based on them are
schematically summarized in Figure 3. RDMA is the link between
the hardware and the application in the context of the kernel network
stack. The network stack of the kernel exists parallel to the RDMA
features, so regular Ethernet traffic and RDMA traffic can occur on
the same interface. In the case of RDMA traffic, the DMA engine
of the network card writes the data directly into the application’s
memory area, bypassing the kernel network stack and its overhead.
RDMA requires hardware support, especially from the network card,
and a suitable protocol. For this reason, this technology will not be
considered further in this paper.

C. High-Speed Packet IO Framework
High-speed packet IO frameworks have been developed to make

the processing of large amounts of packets more efficient. Among the
most popular frameworks are DPDK, PFring and netmap. All three
frameworks require modified drivers and use the same acceleration
techniques. They bypass the standard network stack, i.e. the packets

Application

librdmacm + libibverbs

RDMA Verbs API

IB transport 
protocol

IB network 
protocol

Ethernet link layer

IB transport 
protocol

UDP

Ethernet link layer

IP

iWARP
 protocol

UDP

Ethernet link layer

IP

RoCE v1 RoCE v2 iWARP

library

Kernel 
API

Hardware
features

Fig. 3. RDMA protocols

are only processed by the framework and the applications. They also
replace interrupts with polling when receiving data, which keeps a
CPU core permanently busy polling the network card and thus avoids
the overhead of an interrupt. They also avoid copying data between
kernel space and user space because a packet is copied once from
the NIC to user space via DMA.

III. SELECTION OF FRAMEWORK

In order to make a pre-selection of the framework, literature
research was carried out. Performance, latency and detailed docu-
mentation of the framework are essential for this project. A research
team of the TU Munich compared three different high-speed packet
IO frameworks (PFRing, netmap and dpdk) in a paper [4]. Mainly
the CPU clock speed, the number of processed packets per call
and the cache usage were examined. Furthermore, the latency of
packet forwarding was also examined. All measurements have been
designed to ensure the comparability of the test results: They run
on the same CPU, are equipped with the same 10Gps NICs and use
packet forwarders that apply the same algorithm for each of the three
frameworks to allow a fair comparison between them.

The result of the paper shows the strengths and weaknesses of the
frameworks. If only performance and latency are considered, DPDK
and PFRING seem to be superior to netmap. Though netmap has
advantages. It uses well-known OS interfaces and modified system
calls for packet IO, while keeping a certain degree of interface
continuity and system robustness by performing checks on the user-
provided packet buffers. DPDK and PFRING favour more radical
approaches by breaking with these concepts, which leads to even
higher performance gains. [4]

Comparing the documentation and the community behind the
projects, DPDK stands out. For this reason, DPDK is used in this
work.

A. DPDK
The Data Plane Development Kit (DPDK) is a high-speed packet

IO framework initially developed by Intel. In the meantime, the
project has been transferred to the Linux Foundation. This framework
contains so-called poll-mode drivers, which are not executed in the
kernel as usual. The pollmode drivers are executed in user space.
The kernel is first instructed to load the UIO or VDIO driver for the
affected network interface card. This is possible during operation and
can also be undone. The drivers do nothing but prevent the kernel
from initializing the hardware itself and instead allow a program in
user space to control all features of the hardware itself. [5]

Figure 4 shows the schematic process of receiving data with
DPDK. When a packet arrives at the network card, it is first stored
in the RX queues, and then loaded directly into userspace via DMA



NIC
RX/TX queues

Kernel space

Ring buffers
User space

DPDK

UIO driver

Application Ring buffers

Fig. 4. DPDK structure

without passing through the kernel. For the network interface card
it does not matter whether it accesses userspace or kernel memory.
The physical addresses are legally accessed via DMA. To enable
DPDK to derive DMA descriptors from it, the address space must
be mapped. This is done via pagemaps, which translate the virtual
addresses into physical addresses. After the data is stored in RAM
the Poll Mode Driver of DPDK polls the network card and the main
memory locations for new information and manages all functions
of the network card. For polling, at least one CPU core must be
used permanently, which is used at 100% capacity. By polling, the
overhead of an interrupt is avoided, which means a reduction of
latency. The DPDK now delivers the data available to the application
via an API. Since a network card operated with DPDK, the NIC is
no longer visible to the kernel. All packets must be processed within
the DPDK application. [6]

IV. IMPLEMENTATION

The following chapter describes the development platform and
the implementation and realization of the software. The aim is to
implement a high-speed packet IO framework and extract image
fragments from the Ethernet packets. The image fragments are
then assembled to form an image that has to be transferred to an
application for display.

A. Development Platform
An x86 computer with an Intel Core i7-7700K Quad-Core pro-

cessor (4.2Ghz) and 32GB 2400MHz DDR4-RAM serves as a
development platform. Ubuntu 18.04 is used as an operating system.
For data reception, an Intel X550 network card is utilized, which
provides two 10Gps ports. For the high-speed packet IO framework
implementation, DPDK version 19.11 is used.

In virtual memory management, which is needed for DPDK, the
kernel maintains a table in which it has a mapping of the virtual
memory address to a physical address. For every page transaction, the
kernel needs to load related mapping. When using small size pages,
more page numbers must be loaded, which reduces performance.
[7] When using huge pages, the number of mapping tables to be
loaded by the kernel is reduced. For this reason, four huge pages are
configured with a page size of 1GB instead of the standard page size
of 4KB.

Since the Intel X550 network card does not support the UIO driver,
the VFIO driver is used, which means that the IOMMU must be
activated. The huge pages and the IOMMU configuration are passed
as kernel arguments.

B. Flow Bifurcation
By integrating the UIO or VFIO driver, the network interface

card is no longer visible in the system. The Flow Bifurcation splits
the incoming data traffic to user space applications (such as DPDK
applications) and/or kernel space programs (such as the Linux kernel

stack). It can direct some traffic, for example UDP traffic, to DPDK,
while directing some other traffic, for example ARP requests, to the
traditional Linux networking stack.

There are a number of technical options to achieve this. A
typical example is to combine the technology of SR-IOV and packet
classification filtering. SR-IOV is a PCI standard that allows the same
physical adapter to be split as multiple virtual functions. Each virtual
function (VF) has separated queues with physical functions (PF) see
figure 5. The network adapter will direct traffic to a virtual function
with a matching destination MAC address. In a sense, SR-IOV has
the capability for queue division. Packet classification filtering is a
hardware capability available on most network adapters. Filters can
be configured to direct specific flows to a given receive queue by
hardware. In this way the Linux networking stack can receive specific
traffic through the kernel driver while a DPDK application can receive
specific traffic bypassing the Linux kernel by using drivers like VFIO
or the DPDK UIO module. [8]

NIC virtual bridge

VF PF filter table

DPDK Kernel

Fig. 5. flow Bifurcation structure

C. Software Structure
Figure 6 shows the structure of the previous implementation. The

ImageApp is responsible for displaying the image or video data. This
application uses a library called RxAPI, which gets the extracted
payload of the Ethernet packets from the Linux network stack. Within
the RxAPI, the transferred user data is collected and compiled into
an image. The compiled image is then transferred as a structure to
the ImageApp, which displays the image on a screen.

Network Stack

hardware access

RxAPI ImageAPP

data processing Visualization
Memory al location

Fig. 6. previous implementation structure with RxAPI

The newly implemented variant is shown in figure 7. Compared
to the previous implementation, the Linux network stack has been
replaced by the DPDK, which now receives the packets. The received
packets are now available in ring buffers. The parsing of the image
fragments and the compilation of the image data is realized in the
HbcLIB. The HbcLIB has the same interface as the RxAPI, so that the
ImageApp can be used for the newly implemented variant without any
adaptation. Within the HbcLIB, thread handling is also implemented,
which efficiently allocates resources to the CPU cores.



DPDK

hardware access

HbcLIB ImageAPP

thread handling
data processing

Visualization
Memory al location

Fig. 7. new implementation structure with HbcLIB

V. MEASUREMENT

In this Chapter, the latency of the Linux network stack and the
DPDK implementation will be investigated. Only the time needed
for packet processing will be considered.

A. Measurement setup
Before the latency measurement can be performed, the test setup

must first be determined. For the measurement, a 2.5MP camera is
used, which is connected to an MDI via a GMSL-2 interface. The
MDI is connected to a Linux PC via the 10Gps Ethernet interface. As
measurement software, XTSS from b-plus is used, synchronizing the
Ethernet interface of the MDI and the Linux system. On the Linux
system, two separate measurements with 100,000 received Ethernet
packets each are performed.

First, the conventional implementation with the Linux network
stack is examined. For this purpose, the ImageApp is started with
the RxAPI. Via XTSS the time stamp is recorded within the network
stack when the config packet arrives from the MDI. The RxAPI has
been adapted so that an additional timestamp is recorded when the
config packet is processed. The processing of the config packet within
the RxAPI happens directly before the image data is transferred to
the ImageApp and thus offers a comparable basis to the DPDK
implementation. The latency is then determined from the difference
between the two timestamps.

The second measurement examines the implementation of the
DPDK. First, the VFIO Driver must be loaded for the Ethernet
interface so that the DPDK can process the packets. Afterward, the
ImageApp is started with the HbcLib. Via XTSS the time stamp
within the network card is recorded again as soon as the config packet
arrives from the MDI. Within the HbcLIB the second timestamp was
recorded at the same position as in the RxAPI before the transfer of
the image data to the ImageApp. The latency can now be determined
again from the difference between the two timestamps.

B. Analysis
With the XTSS tool, the measurement deviation can be determined

directly. In both measurements, the inaccuracy was 10µs, which is
almost negligible about the measured values.

Table I shows the latency measurement results of the Linux
network stack. The high divergence of the min and max values
of 13.04ms is particularly noticeable. The reason for this is the
implementation of the Linux network stack. On the one hand, when
an Ethernet packet is received, a soft interrupt is executed, which is
not necessarily processed directly but immediately afterward. On the
other hand, the receipt of the packets by the application depends on
the load of the operating system, which can increase the deviation of
the min and max values.

Table II shows the latency measurement results of the DPDK
implementation. The low divergence of 0.36ms is particularly no-
ticeable when compared to the Linux network stack implementation.
The measurement deviation of 3% is much higher than in the first

measurement, but it is negligible. The convergence of the measure-
ment results can be explained on the one hand by the polling, which
can lead to a time offset in the processing of the packets. On the other
hand, creating batches of two packets also leads to a time offset.

Comparing the average values of the Linux network stack imple-
mentation with the DPDK variant, it is noticeable that the packets
within the DPDK implementation are 11.9 times faster than the Linux
network stack. This shows that the overhead caused by the interrupt
and the copying of data from kernel space to user space leads to a
significant increase in latency.

TABLE I
LATENCY RESULTS OF LINUX NETWORK STACK

Description measured value

min. 5.89 ms

avg. 12.14 ms

max. 18.93 ms

TABLE II
LATENCY RESULTS OF DPDK

Description measured value

min. 0.53 ms

avg. 0.78 ms

max. 0.89 ms

VI. CONCLUSION

The implementation of the high-speed packet IO framework DPDK
shows a significant improvement in latency. Compared to the classic
Linux network stack, however, the setup and implementation of
the DPDK represent a considerable development effort, since any
protocol must be processed within the framework or the subsequent
application.

REFERENCES

[1] T. Limbrunner, Vorlesung: Grundlagen der Fahrerassistenzsysteme,
Vorlesung 08 Teil 1 S4, 2020.

[2] Linux Project Page,
https://www.linux.org/threads/linux-network-stack.9065/
last visited: June 2020

[3] Mellanox Community,
https://community.mellanox.com/s/article/what-is-rdma-x
last visited: June 2020

[4] S. Gallenmüller, P. Emmerich, Comparison of Frameworks for High-
Performance Packet IO,
Munich, Germany: IEEE, 2015.

[5] Linux Foundation DPDK, Getting Started Guide, January 2014
[6] D. Scholz, A Look at Intel’s Dataplane Development Kit,

Munich, Germany: Seminars FI / IITM, 2014.
[7] Kerneltalks,

https://kerneltalks.com/services/what-is-huge-pages-in-linux/
last visited: June 2020

[8] Linux Foundation DPDK, Programmers Guide, January 2014

https://www.linux.org/threads/linux-network-stack.9065/
https://community.mellanox.com/s/article/what-is-rdma-x
https://kerneltalks.com/services/what-is-huge-pages-in-linux/

	Introduction
	Packet Processing
	Linux Network Stack
	RDMA
	High-Speed Packet IO Framework

	Selection of Framework
	DPDK

	Implementation
	Development Platform
	Flow Bifurcation
	Software Structure

	Measurement
	Measurement setup
	Analysis

	Conclusion
	References

