
Latency analysis and comparison of FPGA
implementations for a CSI-2 to Ethernet gateway

using the processing system and a pure
implementation in processing logic

Mario Altendorfer
Deggendorf Institute of Technology

Autonomous Systems / Driver Assistance Systems
Deggendorf, Germany

mario@altendorfer.it

Abstract—Many modern FPGAs not only consist of a Process-
ing Logic (PL), but also contain a Processing System (PS), whose
ARM processor is able to run a Linux operating system and
communicate with the Processing Logic. Because programming
the PL for complex problems is very time consuming, it is
often advisable to implement algorithms in the PS. This can
save development time when implementing the software in the
FPGA platform. However, it should not be forgotten that the
pure implementation of an algorithm in hardware (PL) can be
strongly parallelized and thus a significantly shorter execution
time can be achieved compared to the implementation in the
processing system. In this article, using the example of an
implementation of a CSI-2 (Camera Serial Interface) to Ethernet
gateway, we investigate which speed increases can be achieved
by a pure implementation in the PL of the FPGA compared to
the implementation of the gateway in the PL + PS.

Index Terms—CSI-2, Ethernet, FPGA, latency

I. INTRODUCTION

To enable autonomous driving, vehicles must be equipped
with modern driver assistance systems. These systems contain
sensors that generate a large amount of raw sensor data. In
the development of driver assistance systems it is necessary to
record sensor data in order to control and improve the function
of these systems or to develop new algorithms. The recording
of the data is significantly simplified if the data is transmitted
via a standardized interface that is already supported by as
many end devices as possible. For this purpose, a measuring
device is required that can receive the protocol of the sensors
and pack the data into Ethernet frames.

There are already first approaches of a CSI-2 to Ethernet
converter, from which a prototype has been developed, which
is able to receive Gigabit Multimedia Serial Link (GMSL-2)
data and to output them via two 10 Gbps Ethernet interfaces.
This prototype is called Measurement Data Interface (MDI)
and contains two deserializers for the conversion from GMSL-
2 to Camera Serial Interface (CSI-2) and a Xilinx Zynq 7000
FPGA for the conversion from CSI-2 to Ethernet. In the
already existing gateway, the image data transmitted via CSI-2
was received by the FPGA and processed in the processing

system and sent via 10 Gbps Ethernet over UDP. Within
the Master Applied Research Project the programming of the
FPGA is to be revised. A special focus of the new development
of the FPGA hardware description is to improve the program
runtime. This optimization is to be achieved by reducing the
amount of buffered data in the FPGA and by outsourcing the
computing operation calculated in the ARM processor to the
Processing Logic.

II. OVERVIEW OF FPGA IMPLEMENTATIONS

a) Implementation in the processing system: The FPGA
implementation of the CSI-2 to Ethernet gateway in the
processing system consists first of all of a CSI-2 IP core, which
can receive and process CSI-2 data so that up to four pixels
per clock can be processed by the FPGA via a parallel 96
bit output. This data is forwarded to a Direct Memory Access
(DMA) and stored in Random-Access Memory (RAM) via the
processing system. The processing of the data now takes place
exclusively in PS. For this purpose, an entire image frame is
temporarily stored in RAM and then the structure of the UDP
frames is generated by the PS and forwarded to the Ethernet
IP core via an Advanced eXtensible Interface Stream (AXIS).
The core is able to transmit Ethernet frames from this AXIS
over 10 Gbps. Because an entire image frame is temporarily
stored in RAM and processing takes place in PS, which carries
out serial data processing, a high latency time is expected in
PS implementation. Fig. 1 shows a schematic representation
of the PS implementation.

CSI-2 IP-Core DMA PS
Ethernet IP-

Core

RAMCSI-2 10G Ethernet

Fig. 1. Schematic representation of the PS implementation



It is a mixture of PL and PS implementation. The two
IP cores are implemented in the PL, but the storage and
processing of the image data takes place in PS.

b) Implementation in the processing logic: The second
implementation takes place only in PL. This offers some
advantages, because of this the implementation can be used
with FPGAs without integrated PS, furthermore you are inde-
pendent of an operating system and the latency should have
a much lower jitter, because the timing of the circuit can be
predicted exactly. This is not the case for a version with a
conventional sequential controlled CPU.

First, the sensor data is received by the CSI-2 IP core and
processed accordingly, so that it outputs a 96-bit wide data
stream at a frequency of 200 MHz on each rising edge of the
clock. The CSI-2 transmission is a parallel transmission, which
in this application transfers the sensor data on four data lines.
The CSI-2 IP core receives this data and once four pixels have
been received, they are output on the next rising edge. This
means that the output of the CSI-2 IP core does not always
have to be continuously valid, as it operates at 200 MHz, which
would allow a maximum data transfer rate of 19.2 Gbps, but
CSI-2 only supports 6 Gbps over four data lines. Thus the
output of the IP core clocks faster than the input. It should
be noted, however, that the transmission at the output always
takes place over a 96-bit wide stream that contains four pixels
in a valid transmission. Thus a maximum pixel depth of up
to 24 bits is supported. If this is less than 24 bits, 96 bits
are transmitted in parallel, but the unused bits are marked as
invalid.

Subsequently the data is temporarily stored in a FIFO. Once
the data is buffered, the stream is converted from 96-bit to a
64-bit AXI stream, as this simplifies data transfer between
modules and also expects a 64-bit AXIS at the end of the
Ethernet IP Core processing. For a pixel depth of up to 16
bits, no special procedures are required, as only the valid data
in the stream is linked to the AXIS. If the pixel depth is greater
than 16 bits, more than 64 bits of valid data are transmitted
per clock. This means that converting the 96-bit data stream to
a 64-bit AXI stream is only possible if the data is transmitted
over two clock cycles.

The transmission of an AXI stream is not only limited to
the parallel transmission of payload data, additional signals are
also available. These can be used to transmit further informa-
tion. This allows the entire data of the stream to be declared
valid or invalid. This is also possible for individual bytes of
the AXI stream, so that n Bytes (n ∈ 0, 1, 2, 3, 4, 5, 6, 7, 8)
of valid data can also be transmitted. A further signal with
the designation tready, which is initiated by the slave of the
transmission, can be used to inform the master whether it is
ready to receive data. So the transmission can be monitored
and also the slave can pause the transmission of the data of a
master from a FIFO.

CSI-2 packs image lines into a CSI-2 long packet. This
packet also includes a CSI-2 header that contains the data
type, virtual channel, and the contained payload size in bytes

of the image row. In addition, a timestamp is created at the
time the image line is received in the CSI-2 IP core. This data
is output at the beginning of the transmission of an image line
via the data stream and is needed at a later time to create the
frame header.

After the Conversion to AXIS module has been processed,
the output AXI stream contains the CSI-2 header, a time stamp
and the payload of an image line. The FIFO in packet mode
ensures that at least one image line including all additional
header data is buffered before proceeding with further pro-
cessing of the data. In the process of pre-processing the data,
the byte order can be adjusted in order to obtain a firmly
defined structure of the data via Ethernet and to be able to
interpret it correctly again at the receiver.

The last step is to create the frame header and create an
AXIS for the Ethernet IP core. The challenge here is that it is
quite common for an image line to have a larger payload than a
standard Ethernet frame can contain. From this, an image line
is divided into several Ethernet frames, each with a maximum
payload of 1440 bytes. The size of 1440 bytes was chosen
because this size is a number that has the values 1, 2, 3, 4, 5,
6 and 8 as common divisors. This makes it easier to divide an
image line across multiple Ethernet frames, because regardless
of the valid bytes m contained in the AXIS, it is guaranteed
that n times m equals 1440 bytes at all times, so there is no
need to divide data from a 64-bit stream at any time.

The generation of the AXI stream, which serves as input
for the Ethernet IP core, is processed by a state machine. In
the end, an Ethernet AXI Stream contains the entire Ethernet
header and a maximum of 1440 bytes payload (the last frame
of an image line can contain less than 1440 bytes payload).
An Ethernet header containing additional information about
the currently contained data is required so that the receiver
can undo the division of an image line into several frames
and reassemble the image from all image lines at the end.
This ethernet frame is explained in chapter 3.

Fig. 2 contains the basic diagram of the implementation of
the gateway in the Processing Logic.

CSI-2 IP-Core FIFO
Conversion 
to AXIS

FIFO (packet 
mode)

CSI-2

Preprocessing 
of the data

Build frame 
header

10G 
Ethernet

Ethernet 
IP-Core

Generate 
Ethernet AXIS

Fig. 2. Schematic representation of the PL implementation

III. DESIGN IEEE1722 ETHERNET FRAME FORMAT

For the transfer of the sensor data via Ethernet in the pure
PL implementation a frame structure is to be designed, which
has the necessary components for the transfer of the camera
data and allows a simple calculation of the latency time. These
include at least the standard Ethernet frame header (including
VLAN tag), a time stamp, the line number and an internal
line sequence number. In addition, the header of the CSI-2
packets should be transmitted via Ethernet and be part of



the designed frame header. The timestamp contained in the
frame is the reception time of the CSI-2 data of the FPGA.
By creating a time stamp when receiving the Ethernet frames
at the measuring computer, the latency time can be calculated
very easily by forming the difference.

The IEEE1722 standard describes a frame which is suitable
for the transmission of audio and video data. In addition,
an IEEE1722 frame offers the advantage that TSN (Time
Sensitive Networking) procedures can be applied to the data
traffic. Furthermore, the real-time capability of the transmis-
sion can be ensured. Due to these advantages, the designed
Ethernet frame is based on the IEEE1722 standard frame.
If the IEEE1722 standard frame is extended by the Ethernet
header and the format-specific data, the frame structure shown
in the figure results.

Bit

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0

4

8

12

16 sv tv

20

24

28

32

36

40

44

Ether Type VLAN Tag

CSI-2 Data Type reserved VC Stream Data Length

Stream ID

Timestamp

line number

Frameaufbau CSI-2 Long Packet -> Ethernet IEEE1722

reserved intern seq num reserved event CSI-2 Word Count

AVTP Type AVTP Sub Type reserved

sequence number reserved

Destination MAC

Source MAC

Fig. 3. Structure of the designed IEEE1722 frame

IV. INVESTIGATION OF THE MEASUREMENT SETUP

Before the latency measurement can be carried out, the test
setup and the available cameras must first be examined more
closely. A total of four camera sensors are available for the
measurement. These cameras are the OnSemi AR0820, Sony
IMX490 and OmniVision OV10650 sensors. Furthermore, a
2.5 MP camera from Continental was available to measure the
latency of the FPGA implementation in the processing system.

Tab. I contains an overview of the three camera sensors
and their properties, which were used to measure the FPGA
implementation in the Processing Logic.

TABLE I
OVERVIEW OF THE AVAILABLE CAMERA SENSORS

sensor resolution Image line size Pixel format
AR0820 3840H x 2160V 5760 Byte RAW12
IMX490 2880H x 1860V 5760 Byte YUV
OV10650 1824H x 940V 3648 Byte YUV

The selected cameras are sensors that have a GMSL-2
interface. Since two cameras differ in line size, the latency
measurement can be used to determine whether this has an
influence on the latency that occurs and, if so, to make a
general statement about the latency time for any given line
size. The general test setup used for both implementations
consists of at least one camera sensor, an MDI and a Linux
measurement computer. This measuring computer will record
the network traffic using the application tcpdump and store
the receive time stamp for each packet with an accuracy of
nanoseconds.

V. LATENCY MEASUREMENT

The latency time measurement is particularly concerned
with the measurement of the implementation in the Processing
Logic, since this requires a much more accurate time syn-
chronization and measurement. Nevertheless, we will briefly
explain how the measurement works in general and which
points in time are relevant for the latency measurement. If a
picture line is received by the CSI-2 IP core, the hardware
time of the FPGA is read out and stored into a local signal
(tFPGA). This time is the start of the time measurement. When
the Ethernet data is received at the measurement computer,
a time stamp treceive is also generated and the latency time
(tlatency) can be calculated according to Eq. 1.

tlatency = treceive − tFPGA (1)

The measurement of the latency time of the PS imple-
mentation differs from the PL implementation. Since in the
PS implementation an entire image frame is buffered in the
processing system, only one latency time can be created per
image frame. Therefore a timestamp is created in the FPGA
when the first image line of an image frame is received
and additionally a timestamp when the first UDP data is
received at the Linux measurement computer. The difference
between the two timestamps finally results in the latency of the
transmission. Since in the PL implementation an image frame
is processed line by line, a latency time can be calculated
for each line. For this purpose a time stamp is generated in
the FPGA when an image line is recognized and additionally
a time stamp is generated at the first received IEEE1722
fragment of this image line.

Fig. 4 shows the test setup for measuring the latency
of the PL implementation. Here the MDI with the three
Ethernet interfaces was connected to a switch that supports
time synchronization. Then the switch is connected to the
Linux computer with a 10 Gbps Ethernet link.

timesync

MDI Switch
Linux 

Computer

Camera
MDI Switch

Linux 
Computer

Camera
confi g

Im age  data

Combined  

traffi c

Fig. 4. Setup of the PL latency measurement

In this setup, the image data and time synchronization are
each executed via a 10 Gbps Ethernet interface on the MDI.
This is necessary because the current implementation does not
allow a 10 Gbps Ethernet interface to send data and perform
time synchronization (gPTP) simultaneously. For this reason
the switch is necessary in the design. It collects the data
traffic of the three Ethernet lines and forwards it to a 10 Gbps
Ethernet interface to the measuring computer. This makes it
possible to synchronize the hardware time of the FPGA and the
hardware time of the Ethernet interface of the Linux computer
to an accuracy of about 10 ns. First the latency measurement
of the FPGA implementation in PS shall be considered. For
this purpose the measurement result is shown in table II.



TABLE II
LATENCY MEASUREMENT IMPLEMENTATION IN PS

sensor measurements average standard deviation
2.5 MP sensor 1578 39.75 ms 3.42 ms

As expected, there is a relatively high latency in the millisec-
ond range, since an entire image frame must be buffered and
the composition of the frames must be calculated serially by
the ARM processor. Fig. 5 shows the graphical evaluation of
the measurement result in comparison to the calculated normal
distribution, which deviates from the real measurement curve
due to the small number of measurements performed.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

32 34 36 38 40 42 44 46 48

p
ro
b
ab
ili
ty
 o
f 
o
cc
u
rr
en

ce

latency [ms]

measured latency normal distribution

Fig. 5. statistical distribution of the measured PS latency

Now that the latency of the PS implementation is known, the
measurement is performed with the three available cameras for
the PL implementation. Tab. III shows the result of the latency
measurement for which the mean value of the latency and the
standard deviation were calculated.

TABLE III
LATENCY MEASUREMENT IMPLEMENTATION IN PL

sensor measurements average standard deviation
AR0820 123858 18619 ns 21.87 ns
IMX490 123787 18245 ns 19.90 ns
OV10650 165043 14728 ns 18.51 ns

Due to the large number of measurements performed, the
curve of the calculated normal distribution and the measured
latency should now be very similar (see Fig. 6, 7 and 8).

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

18560 18580 18600 18620 18640 18660 18680

p
ro
b
ab
ili
ty
 o
f 
o
cc
u
rr
en

ce

latency [ns]

measured latency normal distribution

Fig. 6. statistical distribution of the AR0820 sensor PL latency

The latency for the PL implementation is significantly below
the measured implementation of the PS implementation (about

1000 times faster). In comparison to the normal distribution,
the maxium of the curves shows a slight plateu which indicates
deviations in time synchronization.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

18180 18200 18220 18240 18260 18280 18300 18320

p
ro
b
ab
ili
ty
 o
f 
o
cc
u
rr
en

ce

latency [ns]

measured latency normal distribution

Fig. 7. statistical distribution of the IMX490 sensor PL latency

It can be seen that the latency of the two sensors AR0820
and IMX490 (see Fig. 6 and 7) show very similar latency
behavior because they have an identical line size and therefore
the processing in the FPGA requires an identical number of
clock cycles. The sensor OV10650 has a line size of 3648
bytes and an average latency of 14728 ns. The IMX490 sensor
is used as a reference for calculating a estimation of the overall
latency time t as a function of the line size s [byte], since it
has the same pixel format as the OV10650 sensor (see Eq. 2).

tlatency = 8653ns+ s[byte] · 1.6652 ns

byte
(2)

0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016
0.018
0.02
0.022
0.024

14660 14680 14700 14720 14740 14760 14780 14800

p
ro
b
ab
ili
ty
 o
f 
o
cc
u
rr
en

ce

latency [ns]

measured latency normal distribution

Fig. 8. statistical distribution of the OV10650 sensor PL latency

VI. CONCLUSION

By implementing an algorithm exclusively in PL, the ex-
ecution time can be significantly reduced compared to an
implementation in PS, but this performance gain must be
weighed against the additional development effort.

REFERENCES

[1] AVTP, https://avnu.org/wp-content/uploads/2014/05/AVnu-AAA2C
Audio-Video-Transport-Protocol-AVTP Dave-Olsen.pdf, 13.04.2020.

[2] AXI Reference Guide, https://www.xilinx.com/support/documentation/
ip documentation/axi ref guide/v13 4/ug761 axi reference guide.pdf,
20.01.2020.

[3] Camera Data Sheets, https://leopardimaging.com/, 13.04.2020.
[4] Crashkurs VHDL, https://www.uni-ulm.de/fileadmin/website uni ulm/

iui.inst.050/vorlesungen/sose09/lrob/Crashkurs VHDL.pdf, 18.01.2020.
[5] FPGA, https://www.mikrocontroller.net/articles/FPGA, 13.04.2020.


