
Contour-based Object Detection in Dynamic
Thermal Images with Noisy Background

Pia Lützen
Department of Natural Sciences and Industrial Engineering

Deggendorf Institute of Technology
Deggendorf, Germany

Email: pia.luetzen@stud.th-deg.de

Abstract—Recent breakthroughs in uncooled miniature
bolometer systems enable to apply thermal imaging in low
cost applications such as search-and-rescue. Object detection by
means of infrared images promises usage in various scenarios.
In this work, an image processing algorithm for the detection of
rather small objects (covering 0.3 % - 1.5 % of sensor area) is
presented. It is designed for moving devices, expecting a noisy
back- and foreground still showing a steady distribution. Here,
noisy means disturbing contours but also daylight noise. The
key is a combination of background averaging and subtraction
followed by image segmentation in order to find the target
contour with minimum false alarm rate (FAR). Tests carried
out in most complex environments yield FARs between 4 % - 16
%. Preconditions here are the awareness of the target size and
a fix detection range.

I. INTRODUCTION

Any object above 0 K emits thermal radiation. Here, the
radiation’s intensity is an indicator for the object’s surface
temperature. Infrared radiation is invisible for the human eye.
However, Long Wave Infrared (LWIR) sensors (8-14 μm)
enable to convert thermal radiation patterns into displayed
infrared images [1]. This process is called thermal imaging,
obtaining temperature mapping of a certain region of interest
completely contactless [2]. Though, thermal sensors have
been used in military applications (defense, surveillance, etc.)
predominantly due to a high financial and a large form factor
[1], [3].

Nowadays, breakthroughs in uncooled miniature bolometer
systems enable the implementation of high quality and low
cost thermal imaging in applications such as search-and-
rescue (SAR) [1], [3]. With the different type of obtained
information, thermal sensors are independent of illumination
etc. and applicable in various scenarios. Due to the rising
availability of small Unmanned aerial vehicles (UAVs)
there is a growing interest in SAR applications as large
areas can be mapped and missing objects be located [4].
Hereto, an efficient image processing algorithm is essential
in order to detect a certain type of object. In [3], the ViBE
background estimation [5] is used. This method is able
to extract image regions that are hotter or colder than the
environment. [4] also aims to detect objects from an aerial
view. Here, complex background subtraction is not required
as the application is established over the ocean which delivers

a rather homogeneous image background. Object detection
by means of thermal images is also done in [6]. Though, in
this case the sensor is fixed and identifies moving objects.

In this paper a thermal image processing algorithm is
presented which intends the sensor to be mounted on a
moving device or vehicle. Thus, the images are dynamic. In
contrast to previous work, the algorithm addresses equally-
distributed but random backgrounds, or a mixture of back-
and foreground (following simplified worded as background).
An example are regions with strong and high growing
vegetation. Moreover, the algorithm is conceived for objects
covering a sensor area between 0.3 % - 1.5 %. Generally, the
approach consists in the subtraction of an averaged value of
an image in order to emphasize a target. Here, the sought-after
targets are expected to show higher thermal emission than
the environment. Additionally, the image is segmented into
smaller regions of interest in order to find objects of a certain
size. The single steps are explained in the beginning, coming
to testing set-ups and evaluation of results in the end.

II. METHOD

The algorithm is realized by means of the computer vision
library ”OpenCV”. The programming language is Python.
However, in the following subsection, the software is not ex-
plained in detail but the single steps are constituted generally.
Thereafter, the experimental set-up for software testing and
corresponding conditions are described.

A. Algorithm Approach

The sequence of the algorithm’s steps is explained. In figure
1 the image evolution process is depicted with an example
image. Here, the numbering corresponds to the numbering
of the single steps. The example image shows a piece of
cloth midst a flower bed of palor palms. The detection range
accounts approx. 16 cm.

1) Convert image to grayscale

It is essential to have a single channel image,
which means to consider simple incoming radiation
intensities. There are grayscale infrared but also false
color images that show three channels. However,



Fig. 1. Image evolution over detection process;
environment: flower bed of palor palms, indoor at 22◦C; object: piece of
cloth, 23◦C, 4 cm2; detection range: 16 cm

more channels increase computation effort as well as
processing complexity. That is why the first step is to
convert the image to grayscale, if it is not already.

2) Background subtraction

a) Calculate average intensity

For every received frame, the average intensity (=
current) is calculated. Then, it is added up to
the previous frames’ intensity (= previous) in
order to have a more reliable value for the average
background intensity (= overall):

overall = (current + previous)/2
previous = overall

By doing this initially with some frames without
an object, the value has a chance to stabilize. The
goal is to generate a kind of basic noise as a scalar
value that rises from the steady distribution of the
background’s thermal radiation.

b) Subtract average intensity from current frame

Following, the generated background noise is sim-
ply subtracted from the single pixels of every
new received frame. To this, OpenCV’s function
”cv2.subtract()” is used. The function performs
saturation which means that negative values are
clipped to zero [7]. In contrast, results of regular
subtraction are subject to integer overflow. Thus, by
using ”cv2.subtract()” also pixels showing a lower

value than the basic noise are set to zero. Objects at
higher temperatures than the average background
are emphasized in the image.

3) Divide image into blocks

At this point, the object stands out in the image
and holds the highest intensity. However, by definition,
it covers a rather small area of the whole image.
That is why the next step is to divide the image into
smaller blocks at the object’s size scale. The block
size should be chosen to be approximately 2-3 times
the target’s area. This step corresponds to generating
smaller regions of interest that can be investigated
in more detail. Furthermore, large contours from the
foreground are segmented and not seen as coherent
structure anymore. Sought-after object however, will
remain complete.

4) Investigate mean intensity of each block

The next step is to calculate the mean intensity
of every single block in a current frame. Considering
the block containing an object it will have a significant
mean intensity. Figure 2 shows two blocks, (a) contains
the object of interest and (b) shows a part of the
background, more precise a part of a leaf. The mean
intensity of a block with an object can be estimated
by regarding the expected minimum object area and
assuming that it shows the highest intensity value.
For example, the minimum mean intensity of a block
containing 80 pixels and an object of an expected
minimum area of 20 pixels can be calculated as:

min area · 0.5 · max value
80 px

+
(80− min area) px · 0

80 px

=
20 px · 0.5 · max value

80 px
+

(80− 20) px · 0
80 px

≈ 0.125 · max value

Here, the max value corresponds to the maximum value
within the currently investigated block. As the contour

Fig. 2. Selection of blocks with and without object



will not show the highest value exclusively, its overall
intensity is approximated as 0.5 · max value times its
area. Moreover, the minimum mean is targeted, that
is why the rest of the block is assumed as zero. The
estimated value is set as threshold for the blocks’ mean
intensity. Though, also high mean intensities may occur
even without an object (see figure 2 (b)). That is why
also a limit has to be set to the mean intensity value. If
a block’s mean intensity is within the set boundaries it
is further investigated according to the subsequent steps.

5) Contour Detection

A block showing a high enough mean intensity is
then investigated for existing contours. Hereto, image
preprocessing steps are required in order to detect
contours properly. This includes image thresholding,
gaussian blurring and an opening as morphological
transformation (refer to [8], [9], [10]). Then, OpenCV’s
function ”cv2.findContours()” is executed to find
coherent areas of similar intensity. If contours are
found, they are passed to the instructions following
below. The approach of observing mean intensities
before contour detection intends to safe computation
time as it is less effort to calculate an average than
searching for contours in every single block.

6) Check contour area

Being aware of the observation height and the
sensor’s Field of View, the number of pixels covered
by an object of certain size can be deduced. As soon
as a contour is detected, its contour area can be
investigated as a last step of verification. OpenCV’s
function ”cv2.contourArea()” delivers the equivalent
result to the spatial moment m00. Spatial Moments are
calculated by the following equation, where am,n is the
array element at point (m,n):

mij =
∑
m,n

(am,n · xi · yj) , [11]

Setting a threshold and a limit value for minimum and
maximum contour area (e.g. expected target size ± 20
pixels), objects of a certain size are extracted.

7) Detection success

By also passing the area conditions, the image
processing is finished and an object is considered as
detected.

B. Experimental Setup

For testing the algorithm an infrared sensor with 80x80
pixels and a Field of View of 90◦ (horizontal and vertical) is
used. Data are obtained in two different test scenarios.

Fig. 3. Small object in infrared and visible spectrum;
environment: low growing meadow, sunny, outside at 23◦C; object: fabric
ball, 35◦C, 35 cm2; detection range: 1 m

In the first scenario, the images are taken outside in a
low growing meadow. The sun is shining on the place.
Diverse objects are spread on the ground, the objects’ size
ranges from 60 - 520 cm2. By varying the detection range,
the targets appear at different sizes in the image, which
corresponds to the number of pixels covered by one object.
Images are taken at 0.5 m, 1 m and 1.5 m height. Thus, four
categories of target sizes arise: targets ≤ 15 pixel, 25 pixel,
40 pixel and ≥ 80 pixel. Moreover, the outside temperature
accounts 24◦C. The targets show temperatures between
20◦C and 50◦C. Single pictures are taken at a frame rate of
approximately 3 fps, as the here applied serial interface is
not able to reach higher values. To see the difference from
the infrared to the visible spectrum, an additional camera is
included that records the visual scenery.

The images shown in figure 1 are taken in the second
scenario. As already mentioned, the test environment is a
flower bed of palor palms, hence a high growing background
which causes more disturbances. It is comparable to the
conditions comprised by a maize field. A piece of cloth
serves as target, its area accounts approximately 4 cm2.
With a detection range of 16 cm, the object is expected to
cover a sensor area of 25 pixels. Furthermore, its temperature
accounts 23◦C, the leaves’ temperature is 20◦C and the
room temperature approximately 22◦C. In contrast to the first
scenario, the measurement inside allows to record a video
sequence with a frame rate of 50 fps, obtaining approximately
250 frames per video sequence.

III. RESULTS AND DISCUSSION

A. Results from test scenario 1

Starting with the smallest object size (up to 15 pixels) it is
found that those targets are not detected by the software. To
ensure detection success, the target should cover a minimum
of 0.3 % of the sensor area. Otherwise, objects are not
distinguishable from the environment, like noticeable in figure
3. However, that may be improved by using a sensor with way
higher resolution as structures will be presented in more detail.



TABLE I
DETECTION RESULTS 1

Object size 25 px 40 px 80 px

Covered sensor area 0.4 % 0.6 % 1.25 %

PoD 85 % 60 % 60 %

FAR 5 % 0 % 0 %

Considering objects of larger sizes it is proven that the
algorithm works and is able to detect objects. For every size
category the block sizes and hence the minimum mean inten-
sity is adapted. Table I summarizes the received Probability of
detection (PoD) with corresponding false alarm rate (FAR). It
is to say that the PoD is rather small, as an object may be
segmented by dividing the image into blocks, like shown in
figure 4. Thus, contours are detected but do not fit the area
limits. In the example, both contours have single areas of 17
and 16 pixels. Here, it is important to have a dynamic image
and a high frame rate in order to ensure the acquisition of an
image where the object is located within one block completely
(see figure 5). Furthermore, a more steady detection range will
increase the PoD values. Due to an inaccurate height during the
measurements, the amount of covered pixels vary and do not
correspond to the set area limits correctly. Another possibility
is to widen the limits which, in turn, may increase the FAR.
Apart from that, the FAR is good, the smaller the targets
are the more likely some environmental disturbances may be
considered as an object. However, the measuring conditions
are relatively easy to detect an object as the background has
a much lower temperature and shows no additional disturbing
contours.

Fig. 4. Segmented object and resulting contours;
environment: low growing meadow, sunny, outside at 25◦C; object: fabric
ball, 33◦C, 35 cm2; detection range: 0.5 m

Fig. 5. Full contour detection;
environment: low growing meadow, sunny, outside at 25◦C; object: fabric
ball, 33◦C, 35 cm2; detection range: 0.5 m

For this reason, there is no need for a mean intensity limit,
only a threshold. The objects may also be found by only
searching for a contour in the picture. However, test scenario
2 shows a more complex environment.

B. Results from test scenario 2

In the second test environment, way more images containing
an object exist due to a higher frame rate. It is to say that
in every video the object is detected reliably. However, this
scenario requires a limit for the mean intensity of each block.

It is found that the standard deviation of a block can be set
as limit. In contrast to a block containing the target, blocks
showing a part of a leaf will have a high intensity but low
standard deviation.
Figure 6 shows some examples of detection successes. Here,
the improving effect of a more dynamic image manifests, as
there are more chances to have the target located within a
block. Table II shows the results of detection hits. Although
there are some false alarms, the different kind of environment
requires the steps of background subtraction and individual
investigation of smaller regions of interest to find a certain
object. This is due to parts of the background that create
own contours. As already shown in figure 1, the background
subtraction helps to emphasize the object and fade background
parts. However, contours still may be found in the large
image. Dividing it into blocks at the target’s size scale,
large contours are not recognizable anymore, but the object’s
contour remains. This approach decreases the FAR to a
minimum.

TABLE II
DETECTION RESULTS 2

sequence 1 sequence 2

number of detection success 23 24

number of false alarms 1 4

FAR 4 % 16 %



Fig. 6. Selection of detection success;
environment: flower bed of palor palms, indoor at 22◦C; object: piece of
cloth, 23◦C, 4 cm2; detection range: 16 cm

IV. CONCLUSIONS

Summing up, it is to say that the algorithm is reasonable
at a certain kind of background which shows own contours.
Important to know is that targets should cover a significant
sensor area (≥ 0.3 %), however be smaller than background
disturbances. Depending on the target size, the algorithm’s
parameters of block size, mean intensity and area limits have to
be adapted to ensure a reliable operation. Also a fix detection
range is essential to be able to set the area limit values
correctly.
Objects covering a small sensor area (≤ 0.3 % of sensor area)
are not detected yet. Though, the algorithm itself may show
good performance at higher resolved images which can be
investigated in further works.

REFERENCES

[1] F. Pittaluga, A. Zivkovic, and S. J. Koppal, “Sensor-level privacy for
thermal cameras,” in 2016 IEEE International Conference on Computa-
tional Photography (ICCP), May 2016, pp. 1–12.

[2] R. Vadivambal and D. S. Jayas, “Applications of Thermal Imaging
in Agriculture and Food Industry—A Review,” Food and Bioprocess
Technology, vol. 4, no. 2, pp. 186–199, Feb. 2011.

[3] J. Portmann, S. Lynen, M. Chli, and R. Siegwart, “People detection
and tracking from aerial thermal views,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA), May 2014, pp. 1794–
1800.

[4] F. S. Leira, T. A. Johansen, and T. I. Fossen, “Automatic detection,
classification and tracking of objects in the ocean surface from UAVs
using a thermal camera,” in 2015 IEEE Aerospace Conference, Mar.
2015, pp. 1–10.

[5] O. Barnich and M. Van Droogenbroeck, “ViBE: A powerful random
technique to estimate the background in video sequences,” in 2009 IEEE
International Conference on Acoustics, Speech and Signal Processing,
Apr. 2009, pp. 945–948.

[6] Z. Yin and R. Collins, “Moving Object Localization in Thermal Imagery
by Forward-backward MHI,” in 2006 Conference on Computer Vision
and Pattern Recognition Workshop (CVPRW’06), Jun. 2006, pp. 133–
133.

[7] “Operations on Arrays — OpenCV 2.4.13.7 documentation,”
https://docs.opencv.org/2.4/modules/core/doc/operations\ on\ arrays.
html\#subtract.

[8] “Image Thresholding — OpenCV-Python Tutorials 1 documentation,”
https://opencv-python-tutroals.readthedocs.io/en/latest/py\ tutorials/
py\ imgproc/py\ thresholding/py\ thresholding.html.

[9] “Smoothing Images — OpenCV-Python Tutorials 1 documentation,”
https://opencv-python-tutroals.readthedocs.io/en/latest/py\ tutorials/
py\ imgproc/py\ filtering/py\ filtering.html.

[10] “Morphological Transformations — OpenCV-Python Tutorials
1 documentation,” https://opencv-python-tutroals.readthedocs.io/
en/latest/py\ tutorials/py\ imgproc/py\ morphological\ ops/py\
morphological\ ops.html.

[11] A. Fernández Villán, Mastering OpenCV 4 with Python: A Practical
Guide Covering Topics from Image Processing, Augmented Reality to
Deep Learning with OpenCV 4 and Python 3. 7. Birmingham, UNITED
KINGDOM: Packt Publishing, Limited, 2019.


