Module Description
Bachelor Elektro- und Informationstechnik

Faculty Elektrotechnik, Medientechnik und Informatik

Examination regulations 01.10.2013

Status: Dienstag 10.09.2019 09:13
• C-01 Mathematics I ..5
• C-02 Mathematics II..8
• C-03 Physics I ...10
• C-04 Physics II ...14
• C-05 Principles of Electrical Engineering I ...18
• C-06 Principles of Electrical Engineering II ...21
• C-07 Principles of Computer Engineering ...24
 ▶ C 1107 Computer Science I ..25
 ▶ C 1108 Principles of Digital Technology ...30
• C-08 Computer Science ...32
 ▶ C 2109 Computer Science II ...33
 ▶ C 3110 Computer Science III ...35
• C-09 Digital Technology ...37
• C-10 Material Engineering and Applied Solid-State Physics40
• C-11 Electronic Devices ..43
• C-12 Electrical Measurement Techniques ...44
• C-13 Control Techniques I ...46
• C-14 Business Administration ...48
• C-15 Electronic Circuits I ...49
• C-16 Microcomputer Technology ..51
• C-17 Digital Signal Processing ...52
• C-18 Communications Engineering I ..54
• C-19 Electrodynamics ...56
• C-20 Electromagnetic Compatibility ...60
• C-21 English for Engineers ...62
• C-22 Seminar..66
• C-23 General Elective ...67
• C-24 Bachelor Thesis ...68
- C-25 Internship ... 69
 - C 5126 Internship .. 69
 - C 5127 Practical Seminar ... 70
- C-26 Practical Training Seminar .. 71
 - C 5128 Practical Training Seminar I 71
 - C 5129 Practical Training Seminar II 71
- C-27 Control Techniques II ... 73
- C-28 Automation Technology ... 75
- C-29 Sensor-Actuator Networks .. 77
- C-30 Electric Machines and Drives 78
- C-31 Power Electronics .. 80
- C-32 Automotive Electronics ... 83
- C-33 Robotics .. 85
- C-34 Power Engineering Plants .. 86
- C-35 Factory Automation ... 87
- C-36 System Technology for Renewable Energy 89
- C-37 Computer-Aided Simulation in Electrical Power
 Engineering ... 91
- C-38 Power Supply Technology ... 92
- C-39 RF - Measurement / Microwave Circuit Design 94
- C-40 Radio Frequency (RF) Electronics 97
- C-41 Mains-Supplied Communication 100
- C-42 Mobile Communication .. 102
- C-43 Telecommunication II .. 104
- C-44 Communication Technology / Network Engineering 108
- C-45 Electronic Circuits II ... 109
- C-46 Principles of Integrated Circuits and Systems 111
- C-47 RF - Circuits .. 112
• **C-48 Introduction to Optoelectronics and Laser Technology**..........................114
• **C-49 Production / Quality Assurance in Electronics**...........116
• **C-50 Digital Image Processing** ...119
C-01 MATHEMATICS I

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Reinhard Schlosser</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C1101 Mathematics I</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Reinhard Schlosser</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>8</td>
</tr>
<tr>
<td>ECTS</td>
<td>9</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 120 hours self-study: 150 hours Total: 270 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Module Objective

Primary learning objective: Students should be capable of applying mathematical concepts and methods to technical tasks in both their studies and later in their professional lives.

Students will acquire the following competencies: They have a working knowledge of symbolic fractions (equivalent fractions, distributive property, etc.). They are able to solve basic geometric tasks such as distance between point-line, point-plane, and line-line; and intersection angle of line-line, line-plane using vectors. They will have a good command of calculations with complex numbers; in particular, of conversion into various forms (cartesian, polar, exponential). Thus they are capable of applying the complex alternating current calculation. They are familiar with the definitions and definition areas, value areas, special function values, important calculation rules, and areas of differentiability of the basic functions (\(x^?, \sin, \cos, \tan, \cot, \arcsin, \arccos, \arctan, \arccot, \sinh, \cosh, \tanh, \coth, \arsinh, \arcosh, \artanh, \arcoth, \exp, \ln\)). In particular, they are able to sketch the appropriate graph. They are familiar with the definition of derivation and its physical, geometrical and analytical significance. They are familiar with the rules of differentiation and can apply them to expressions which are built up of elementary functions. They are familiar with basic integrals and are able to apply integration through substitution and partial integration to simple cases. They can apply integral calculation to geometric or physical questions.
They are able to examine linear systems of equations with the help of Gaussian elimination. They are capable of utilising matrix calculus.

Applicability in this and other Programs

With regards to bachelor degree course: C02, C04, C06, C10, C11, C12, C13, C15, C16, C17, C18, C19, C20, C27, C28, C31, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49, C50

With regards to other degree courses: none

Entrance Requirements

Formally: none

In terms of content: none

Learning Content

1. **Numbers and Vectors**
 1.1. Sets and Transformations
 1.2. Real Numbers
 1.3. Planes
 1.4. Vectors
 1.5. Products
 1.6. Lines and Planes
 1.7. Complex Numbers

2. **Functions, Tolerances, Constants**
 2.1. Functions (Basic Concepts)
 2.2. Polynomials and Rational Functions
 2.3. Trigonometric Functions
 2.4. Sequences and Limits of Sequences
 2.5. Calculation Rules for Limits of Sequences and Convergence Tests
 2.6. Limits of Functions
 2.7. Continuous Functions
3. **Differentiation**

 3.1. The Derivation of a Differentiable Function

 3.2. Applications of Differentiation

 3.3. Inverse Functions

 3.4. The Exponential and Logarithm Function

4. **Integration**

 4.1. The Definite Integral

 4.2. Rules of Integration

 4.3. Integration of Rational Functions

 4.4. Improper Integrals

5. **Linear Algebra**

 5.1. Systems of Equations and Matrices

 5.2. Matrix Multiplication

 5.3. Determinants

Teaching Methods

Seminaristic lessons. In class, the contents are worked out with the involvement of the students, documented with the help of a gap script, illustrated with examples and flanked and practiced with comprehension questions and 5-minute exercises. Exercises, controlled questions, hints and sample solutions help the student to rework and acquire the contents. Application-oriented examples and tasks demonstrate the usefulness of mathematical concepts and methods and build bridges to the foundation of electrical engineering, physics and electrodynamics.

Recommended Literature

C-02 MATHEMATICS II

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Reinhard Schlosser</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C2102 Mathematics II</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Reinhard Schlosser</td>
</tr>
<tr>
<td>Semester</td>
<td>2</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>6</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
</tbody>
</table>
| Workload | Time of attendance: 90 hours
self-study: 90 hours
Total: 180 hours |
| Type of Examination | written ex. 90 min. |
| Duration of Examination | 90 min. |
| Language of Instruction | German |

Module Objective

Primary learning objective: Students should be capable of applying mathematical concepts and methods to technical tasks in both their studies and later in their professional lives.

In addition, students will acquire the following competencies: They are able to apply differential and integral calculations to spatial curves, areas and ranges. In particular, they are capable of determining tangents and tangent planes. They are familiar with the definition of gradient, divergence, and rotation and their geometric as well as physical significance. They are thereby capable of applying these concepts in more advanced courses (electrodynamics).

Applicability in this and other Programs

In regards to this bachelor degree course: C11, C12, C13, C17, C18, C19, C27, C28, C31, C33, C34, C37, C38, C39, C40, C41, C42, C43, C45, C46, C48, C50

In regards to other degree courses: none

Entrance Requirements

Formally: none

In terms of content: C01, C03, C05
Learning Content

1. Linear Algebra
 1.1. Linear Functions and Characteristic Values
 1.2. Symmetric Matrices and Quadratic Forms

2. Functions of Multiple Variables: Differentiation
 2.1. Curves in IR^n
 2.2. Real-valued Functions with Multiple Real Variable
 2.3. Applications of Differentiation
 2.4. Functions with Vectorial Values

3. Functioning of Multiple Variables: Integration
 3.1. Parameter Integrals
 3.2. Curve Integrals
 3.3. Integration over Flat Ranges
 3.4. Integration over Areas in Space
 3.5. Integration over 3-Dimensional Spaces

Teaching Methods

Seminaristic lessons. In class, the content is developed with the involvement of the students, documented with the help of a gap script, illustrated by examples and flanked and practiced by comprehension questions and 5-minute tasks. Exercises, control questions, tips and sample solutions serve the student for reworking and appropriation of the contents. Application-oriented examples and tasks demonstrate the usefulness of mathematical concepts and methods and build bridges to the foundations of electrical engineering, physics and electrodynamics.

Recommended Literature

Module Objective

Students essentially deal with methods of classical physics of a point mass. They learn the necessary steps to work out independent solutions for corresponding problems in the field of engineering, whereby they are especially enabled to critically question the selection of the corresponding methods and calculation procedures.

The students get to know typical models, methods and problems from engineering practice, which can be processed with the kinematics and dynamics of a mass point, together with corresponding solution methods and strategies. The physical way of thinking of mechanics is anchored.

Students achieve the following learning objectives:

Professional Skills

The students have knowledge of the kinematics and dynamics of point masses in one-, two- and three-dimensional space. In addition, they know the concepts of free, forced and damped linear harmonic oscillation. Students are able to work conceptually and methodically. They know the most important physical models and correlations and have applied them in practical exercises. In particular, they know the basic assumptions and theories behind the phenomena to be described. They are also able to select suitable mathematical methods on the basis of a problem description and to systematically work out the solution on the basis of these methods.
They have the knowledge to interpret the results in a subject-specific way. In summary, the students can apply their acquired knowledge to engineering tasks in a practice-oriented way.

Methodological Skills

Depending on the problem, students are able to identify and successfully apply appropriate calculation methods from a range of calculation methods. They can use scientific calculators and, if necessary, computer algebra software. The students have the ability to carry out independent research on the basis of more extensive exercises and to develop their existing knowledge independently.

Soft Skills

The students are aware of their responsibility as future engineers. They are in a position to discursively question problems among themselves, to justify the solutions argumentatively and to critically evaluate the results of their calculations.

Applicability in this and other Programs

In regards to this bachelor degree course: C02, C04, C06, C10, C11, C12, C13, C18, C19, C20, C27, C28, C32, C33, C34, C35, C36, C37, C38, C39, C41, C42, C43, C44, C46, C47, C48, C50

In regards to other degree courses: none

Entrance Requirements

Formally: none

In terms of content: none

Learning Content

1. **Crash course mathematics (differential, integral and vector calculus)**

2. **Kinematics of a mass point**
 2.1. Basic kinematic variables
 2.2. The one-dimensional motion
 2.3. Motions in two- and three-dimensional space
 2.4. Falling and throwing motions
 2.5. Uniform rotation
 2.6. Kinematics in polar coordinates
3. **Dynamics of a mass point**
 - 3.1. Mass and force
 - 3.2. Newtonian Axioms
 - 3.3. Forces that are easy to describe
 - 3.4. Work and energy
 - 3.5. Conservative forces and potential
 - 3.6. Impact and impulse
 - 3.7. The problem of mass variation over time
 - 3.8. Shock processes
 - 3.9. Torque and angular momentum of mass points

4. **Oscillations and vibrations**
 - 4.1. Free undamped linear harmonic oscillation
 - 4.2. Damped linear harmonic oscillation
 - 4.3. Forced linear oscillation
 - 4.4. Non-linear vibration

Teaching Methods

Lectures and seminaristic lessons in alternation, solving tasks during the lecture and independent extended training of the computing competence on the basis of weekly exercise sheets, detailed solutions to the exercise sheets are each given with a time delay of one week and are to be compared with the own solutions, if questions arise these are clarified in the lecture.

The active participation of the students during the lecture and in the processing of the exercise sheets is particularly important through a discursive style. Challenge and encourage is the motto, so that they are catapulted from an initial passive attitude into a mode of activity.
Recommended Literature

Module Objective

Students deal with methods of classical physics. They learn the necessary steps to work out independent solutions for corresponding problems in the field of engineering, whereby they are especially enabled to critically question the selection of the corresponding methods and calculation procedures. The module also includes a practical course in physics in which the students learn how to carry out and evaluate experiments.

In the module Physics 2 students get to know typical models, methods and problems, as well as experiments from engineering practice, which can be processed within the framework of classical physics, together with corresponding solution methods and strategies. The physical way of thinking of classical physics is anchored.

Students achieve the following learning objectives:

Professional Skills

The students have knowledge of coupled oscillations and waves (including acoustics), the mechanics of the rigid body, classical thermodynamics, and electromagnetism. In addition, they can carry out and evaluate physical experiments in a professional manner. The students are able to work conceptually and methodically. They know the most important physical models and correlations and have applied them in practical exercises. In particular, they know the basic assumptions and theories behind the phenomena to be described. They are also able to select suitable mathematical
methods on the basis of a problem description and to systematically work out the
solution on the basis of these methods. They have the knowledge to interpret the
results in a subject-specific way. In summary, the students can apply their acquired
knowledge to engineering problems in a practice-oriented way.

Methodological Skills

Depending on the problem, students are able to identify and successfully apply
appropriate calculation methods from a range of calculation methods. They can use
scientific calculators and, if necessary, computer algebra software. The students have
the ability to carry out independent research on the basis of more extensive exercises
and to further develop their existing knowledge independently. In addition, they are
familiar with the interplay of theory and experiment, as well as with the procedure for
carrying out and evaluating physical experiments.

Soft Skills

The students are aware of their responsibility as future engineers. They are able to
discursively question problems among themselves, to argue for solutions and to
critically evaluate the results of their calculations and experiments.

Applicability in this and other Programs

In regards to this bachelor degree course: C11, C12, C18, C19, C20, C28, C34, C35,
C36, C37, C38, C39, C41, C42, C43, C46, C48, C50

In regards to other degree courses: none

Entrance Requirements

Formally: none

In terms of content: C01, C03, C05

Learning Content

1. **Coupled oscillations and waves**
 1.1. Perpendicular superposition of oscillations: Lissajus figures
 1.2. Parallel superposition of oscillations
 1.3. The eigenvalue problem with coupled oscillators
 1.4. Waves
 1.5. Acoustics
2. The rigid body
 2.1. Model of the rigid body
 2.2. Center of mass
 2.3. Motion of a free rigid body
 2.4. Pairs of force
 2.5. Moment of inertia
 2.6. Motion around a fixed axis

3. Thermodynamics
 3.1. Concept of heat
 3.2. Temperature and model of the ideal gas
 3.3. Thermal expansion of bodies
 3.4. The laws of thermodynamics
 3.5. Heat transport processes
 3.6. Changes of state of ideal gases
 3.7. Circular processes
 3.8. Kinetic gas theory
 3.9. Real gases and phase transformations

4. Students lab work: physical experiments
 4.1. Introduction to experimental training and error calculation
 4.2. Dielectric constant
 4.3. Induction law for sinusoidal alternating currents
 4.4. Hysteresis
 4.5. Helmholtz coil pair
 4.6. Hall Effect
 4.7. Solar collector and heat pump
 4.8. Natural radioactivity
4.9. Double pendulum
4.10. Gyroscope

Teaching Methods

Lecture and seminaristic lessons in alternation, plus a one-hour laboratory course, which is carried out every two hours for 14 days; solving problems during the lecture and independent extended training of the arithmetic competence on the basis of weekly exercise sheets, detailed solutions to the exercise sheets are issued with a time delay of one week each and are to be compared with one's own solutions, if questions arise these are clarified in the lecture. The execution and later evaluation of an experiment usually takes place in teams of two, the return and discussion of the evaluation also takes place with a time delay.

Recommended Literature

Module Objective

The course deals with the fundamentals of studying electrical engineering and information technology, in particular with the basic terms, network analysis and complex AC calculation. The students learn the independent analysis of DC and AC networks.

The students achieve the following learning objectives:

Professional Skills

The students work with the basic concepts and know the necessary units. They analyze both simple and complicated networks with universal procedures. The application of network theorems completes the analysis competence.

Students learn the application of complex AC calculation and can analyze AC networks, which include multiphase systems.

Furthermore, the students learn how to handle transfer functions, their mathematical description and their frequency response.
Methodological skills

The subject is strongly mathematically oriented. For this purpose, the students will get an introduction to their mathematical procedures and their application in theory and examples. The methods are each subdivided and presented in a series of process steps.

Soft Skills

Personal competence lies in the detailed application of mathematical and technical procedures.

Applicability in this and other Programs

In regards to this bachelor degree course: C02, C04, C06, C10, C11, C12, C13, C15, C16, C17, C18, C19, C20, C27, C28, C31, C32, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44, C45, C46, C47, C48, C50

In regards to other degree courses: none

Entrance Requirements

Formally: none

In terms of content: none

Learning Content

1. Basic terms
 1.1. Charge, current, voltage
 1.2. Power, energy, efficiency
 1.3. Sources
 1.4. Ohm's Law

2. Electrical circuits
 2.1. Kirchhoff's laws
 2.2. Series and parallel connection
 2.3. Mesh Current Analysis, Nodal Potential Analysis
 2.4. Network Theorems
 2.5. Nonlinear Networks

3. AC networks
3.1. Characteristics of AC signals
3.2. Linear network elements
3.3. Complex AC calculation
3.4. Multiphase systems
3.5. Transfer functions
3.6. Frequency response analysis

Teaching Methods

Lecture, weekly supervised exercises with the possibility to reflect your own knowledge and to ask questions. The lecture introduces software tools such as LTspice and Python, which can support self-study very well.

Recommended Literature

C-06 PRINCIPLES OF ELECTRICAL ENGINEERING II

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Günter Keller</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 2106 Principles of Electrical Engineering II</td>
</tr>
<tr>
<td>Lecturers</td>
<td>Prof. Dr. Detlef Brumbi</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Richard Hämmerle</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Günter Keller</td>
</tr>
<tr>
<td>Semester</td>
<td>2</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td></td>
</tr>
<tr>
<td>Semester periods per week(SWS)</td>
<td>7</td>
</tr>
<tr>
<td>ECTS</td>
<td>8</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 105 hours</td>
</tr>
<tr>
<td></td>
<td>self-study: 135 hours</td>
</tr>
<tr>
<td></td>
<td>Total: 240 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Module Objective

The course deals with the basics of study of electrical engineering and information technology, in particular with electric filters, transformers, transients, quadripoles and state space representation.

The students learn the autonomous application of the networks as electrical filters, transients quadripoles and state space representation.

The students achieve the following learning objectives:

Professional Skills

Students apply the fundamentals of electrical engineering I to electrical filters and transformers. They analyze both simple and complex networks in terms of transient phenomena and determine their system responses.

As an important special case of electrical networks, they become acquainted with the description of electrical quadripoles and carry out calculations with these quadripoles.

Furthermore, the students learn the description of electrical networks using state space representation in mathematical and graphical form.
Methodological Skills

The subject is strongly mathematically oriented. For this purpose, the students will get an introduction to their mathematical procedures and their application in theory and examples. The methods are each subdivided and presented in a series of process steps.

Soft Skills

Personal competence lies in the detailed application of mathematical and technical procedures.

Applicability in this and other Programs

In regards to this bachelor degree course: C11, C12, C13, C15, C17, C18, C19, C20, C27, C31, C33, C34, C36, C37, C38, C39, C40, C41, C42, C43, C45, C46, C47

In regards to other degree courses: none

Entrance Requirements

Formally: none

In terms of content: C01, C03, C05

Learning Content

1. Electric filters
 1.1. Theoretical Basics
 1.2. Transformations
 1.3. Passive realization
 1.4. Active realization

2. Transformer
 2.1. Structure and functionality
 2.2. Measurement on transformers
 2.3. Loaded transformers

3. Transients
 3.1. Linear differential equations
 3.2. Laplace transformation
3.3. Application of the Laplace Transform
3.4. Impulse response, step response
3.5. Initial states

4. **State space representation**
 4.1. Establishing the state equations
 4.2. Structures of State Space Representation
 4.3. Solution of state space representation
 4.4. Applications

5. **Four-pole theory**
 5.1. Four-pole equations
 5.2. Four-pole circuits
 5.3. Operating parameters

6. **Laboratory experiments: DC and AC networks**

Teaching Methods

Lecture, weekly supervised exercises with the possibility to reflect your own knowledge and to ask questions. The lecture introduces software tools such as LTspice and Python, which can support self-study very well.

Recommended Literature

C-07 PRINCIPLES OF COMPUTER ENGINEERING

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Andreas Grzemba</td>
</tr>
</tbody>
</table>
| Course number and name | C 1107 Computer Science I
 C 1108 Principles of Digital Technology |
| Lecturers | Prof. Dr. Andreas Grzemba
 Prof. Dr. Andreas Penningsfeld |
| Semester | 1 |
| Duration of the module | 1 semester |
| Module frequency | annually |
| Course type | required course|
| Niveau | Undergraduate |
| Semester periods per week (SWS) | 5 |
| ECTS | 6 |
| Workload | Time of attendance: 75 hours
 self-study: 105 hours
 Total: 180 hours |
| Type of Examination | written ex. 90 min. |
| Duration of Examination | 90 min. |
| Language of Instruction | German |

Module Objective

Primary learning objective: The students should be able to apply mathematical terms and methods of Boolean algebra to technical tasks in study and work.

To do this, students acquire the following skills:

1. Knowledge of the basics of digital circuits
2. Ability to synthesize and analyze digital systems.
3. Ability to program embedded systems with different programming languages (assembler, C)
4. Knowledge of the basics of digital circuits
5. Ability to synthesize and analyze digital systems
6. Understanding the basics of digital circuits
7. Develop ability to synthesize and analyze digital systems
8. Get to know and apply laws and theorems of Boolean algebra

9. Learning to solve problems of Boolean algebra

Applicability in this and other Programs

For this degree program: C08, C13, C16, C17, C27, C34, C35, C37, C44, C50

For other degree programs: none

Entrance Requirements

See submodule description

Learning Content

See submodule description

Teaching Methods

Seminar-like instruction. In class, the content is developed with the involvement of the students, documented with the help of a gap script, illustrated by examples and flanked and practiced by comprehension questions and 5-minute tasks. Exercises, control questions, suggestions and sample solutions serve the student for reworking and appropriation of the contents. Application-oriented examples and tasks demonstrate the usefulness of the mathematical concepts and methods of Boolean algebra.

Recommended Literature

See submodule description

- **C 1107 COMPUTER SCIENCE I**

Objectives

The students should be able to substantiate theoretical and practical contents of the lecture within tasks.

The subject is divided into two parts:

1. **Basics of Number Systems**

Knowledge of the basics of number representations (decimal, dual, hexadecimal, floating-point numbers), as well as knowledge in the calculation of these number systems.

Ability to convert numbers into different number systems.
2. Programming in C

This includes the partitioning of a task into informal algorithms, the implementation into a realization, as well as testing and troubleshooting in the implementation.

In detail, the objectives are:

1. Ability to program tasks with the C programming language
2. Ability to analyze tasks for implementation in C
3. Ability to test and troubleshoot implementations

Learning Content

Basics

1 Number systems

 1.1 Definition
 1.2 Basis
 1.3 Conversion between number systems
 1.4 Range of values
 1.5 Number table from 0 to 16
 1.6 Tasks

2 Computing in the dual system

 2.1 Addition
 2.2 Subtraction
 2.3 Multiplication
 2.4 Division
 2.5 Decimal places
 2.6 Tasks

3 Computing in the hexadecimal system

 3.1 Convert
 3.2 Number circle
 3.3 Addition and subtraction
 3.4 Multiplication and Division
 3.5 Tasks
4 Negative numbers

4.1 Sign and Amount
4.2 Complement Representation
4.3 Computing with numbers in complement
4.4 Tasks

5 Binary Coded Decimal Numbers (BCD)

5.1 Coding
5.2 Computing with BCD numbers
5.3 Tasks

6 Floating point numbers

6.1 Definition
6.2 Standard floating point number
6.3 Value range of floating point numbers
6.4 Convert floating point numbers between number systems
6.5 Calculating with floating point numbers
6.6 Tasks

Programming in C

1 Main program, main ()

2 Instructions

3 Comments

4 Input / Output

4.1 printf ()
4.2 scanf ()
4.3 putchar ()
4.4 getchar ()
4.5 gets ()
4.6 getch () and kbhit ()

5 Data types

5.1 Integer types:
5.2 Floating point numbers:
5.3 Boolean data type
5.4 Pointer
6 Variables

6.1 Static variables
6.2 Dynamic variables, sizeof ()
6.3 Fields (array)
6.4 Initializing variables
6.5 Existence and visibility of variables

7 Constants

7.1 Constant as legal value
7.2 Constant with keyword const
7.3 Constant with #define
7.4 Constants with enum
7.5 Constants in libraries

8 Operators

8.1 Expression
8.2 Allocations
8.3 Arithmetic operations
8.4 Compare
8.5 Logical operations
8.6 Bit operations
8.7 Sliding operations

9 Type conversion

10 Control structures

10.1 Grinding
10.2 Jump instructions, unconditional jumps
10.3 Branches, conditional jump statements

11 Functions, subprograms

11.1 Call by value
11.2 Call by reference
11.3 Return of a pointer
11.4 variable transfer parameter list

12 Characters, strings

12.1 Definition of characters
12.2 Definition of Strings
12.3 Operations on Strings, <string.h>
13 Mathematical functions

13.1 Trigonometric functions
13.2 Power functions, pow ()
13.3 Random function, rand ()

14 Pointers

14.1 Pointer to variables
14.2 Pointer arithmetic
14.3 Pointer to void
14.4 Pointers to functions

15 Memory, dynamic memory management

16 Preprocessor instructions

16.1 Include text, #include
16.2 #define
16.3 Macros
16.4 Conditional compilation

17 Command processor

17.1 Arguments of the command line
17.2 System commands

18 Recursion

19 Structures, further data types

19.1 Struct
19.2 Typedef
19.3 Access to structured data types
19.4 Bit fields
19.5 Union type (union)
19.6 Fields of structure variables

20 Files

21 ASCII table

Entrance Requirements

Formally: none
Type of Examination

part of module exam

Methods

Seminar-like instruction.

After presenting the contents of the lectures and presenting the theoretical background, suitable model tasks are worked through step by step.

In the part number systems, the solution of tasks with paper and pencil without a calculator is particularly emphasized, as this creates a feeling for the numbers. This is urgently needed in the later programming part.

The process of learning programming techniques is done by reworking a lot of illustrative material practically on the computing system, which develops a good autonomy in the course of the semester. The development of the ability to work independently is achieved by various projects, which can then be solved almost independently with the support of the lecturer.

The media forms are blackboard, script, exercises collection, beamer, personal computer, overhead projectors and secondary literature.

Recommended Literature

详细介绍

C 1108 PRINCIPLES OF DIGITAL TECHNOLOGY

Objectives

Advanced knowledge of characteristics and application of electric devices.

Functional comprehension and ability to basic comprehension and to practice-oriented assignment of electrical devices.

Developing the ability to synthesize and analyze digital systems.

Get to know and apply laws and theorems of Boolean algebra.

Learning to solve problems of Boolean algebra.
Learning Content

Theorems and laws of switching algebra

1. Switching function
 1.1. Normal forms of switching functions (SF)
 1.2. Minimization of switching functions

2. Combinatorial circuits, switching networks
 2.1. General design guidelines
 2.2. Code converter
 2.3. Comparators
 2.4. Multiplexer and demultiplexer
 2.5. Algebraic adder
 2.6. Dynamic behavior of combinatorial circuits

Entrance Requirements

Formally: none

Type of Examination

part of module exam

Methods

Overhead projector, whiteboard, beamer

Recommended Literature

Module Objective

Ability to program embedded systems with various programming languages (assembler, C).

Acquisition of knowledge and skills to use an object-oriented programming language, especially in C++.

Applicability in this and other Programs

For this degree program: C16, C34, C35, C37

For any other degree program: none

For degree program Informatic III: C 3110

Entrance Requirements

See submodule description

Learning Content

See submodule description
Teaching Methods

See submodule description

Recommended Literature

See submodule description

C 2109 COMPUTER SCIENCE II

Objectives

The students should be able to substantiate the theoretical and practical contents of the lecture within complex tasks.

This includes the decomposition of a task into informal algorithms, the implementation in a machine-oriented realization, as well as testing and troubleshooting in the implementation.

In detail, the objectives are:

1. Ability to program tasks with the object-oriented programming language C ++
2. Ability to analyze tasks for implementation in the Programming language C ++
3. Ability to implement databases in the Programming language C ++
4. Ability to test and troubleshoot complex systems

Learning Content

1 Limitation to the programming language C

2 Input / Output

 2.1 Comments
 2.2 Main program, main ()
 2.3 Precompiler statements
 2.4 Namespaces, namespace:
 2.5 Cin, Cout

3 Classes and Objects

 3.1 Object Instances
 3.2 Elementary objects int, float, char
 3.3 Objects of class string
 3.4 Create new classes
 3.5 Copying objects
3.6 Static properties of a class
3.7 Static methods of a class
3.8 Inheritance, derived classes:
3.9 Polymorphism, virtual functions
3.10 Overloading operators
3.11 Templates
3.12 Fields

4 Block monitoring

5 References

5.1 Subroutine calls

6 Friendly classes, 'friend'

7 Run Time Type Information, RTTI

8 Type conversions 'Type cast'

8.1 Implicit and Explicit Type Conversions
8.2 'Typecasts' in C++

9 Files

10 Linked lists

Entrance Requirements

Formally: none

In terms of content: C01, C05, C07

Type of Examination

part of module exam, written ex. 90 min.

Methods

The teaching method is seminaristic instruction.

After presenting the contents of the lectures and presenting the theoretical background, suitable model tasks are worked through step by step.

The process of learning programming techniques is done by reworking a lot of illustrative material practically on the computing system, which develops a good autonomy in the course of the semester. The development of the ability to work independently is achieved by various projects, which can then be solved almost
independently with the support of the lecturer. An example is the creation of a telephone book on the basis of a self-programmed database.

The media forms are blackboard, script, exercises collection, beamer, personal computer, overhead projectors and secondary literature.

Recommended Literature

C 3110 COMPUTER SCIENCE III

Objectives

Professional Skills:

Students can independently develop larger object-oriented programs using typical elements of object-oriented programming such as classes, inheritance, and dynamic binding.

Students can work with ready-made classes from libraries.

The students master the programming language C # and know their differences to C ++

Learning Content

Programming language C #

1. Static functions
2. Data types, control structures and operators
3. Classes, attributes, methods
4. Inheritance and Dynamic Binding
5. Vectors
6. Strings
7. Template classes
8. Class libraries
Entrance Requirements
Formally: none
In terms of content: C1107, C2109, C3110

Type of Examination
part of module exam, written ex. 90 min.

Recommended Literature
Module code | C-09
Module coordination | Prof. Dr. Andreas Grzemba
Course number and name | C 3111 Digital Technology II
Lecturer | Prof. Dr. Andreas Grzemba
Semester | 3
Duration of the module | 1 semester
Module frequency | annually
Course type | required course
Niveau | Undergraduate
Semester periods per week (SWS) | 4
ECTS | 4
Workload | Time of attendance: 60 hours
| self-study: 60 hours
| Total: 120 hours
Type of Examination | written ex. 90 min.
Duration of Examination | 90 min.
Language of Instruction | German

Module Objective

Primary learning objective: Students should be able to apply sequential circuits and automata to technical tasks in their studies and career.

To do this, students acquire the following skills: knowledge of the basics of sequential circuits and automata; Ability to synthesize and analyze sequential systems.

Applicability in this and other Programs

For this degree program: C35, C44

For any other degree program: none

Entrance Requirements

At least 42 ECTS credits

passed examinations of at least two of the modules Mathematics I (C-01), Physics I (C-03) and Fundamentals of Electrical Engineering I (C-05)
Learning Content

Flip-flop (FF), bistable trigger
1. Basic RS flip-flop
2. D flip-flop
3. JK flip-flop
4. Conversion of flip-flop

Counter
1. Design of synchronous counters
2. Register circuits

Sequential circuits, rear derailleurs, digital vending machines
1. Description and design of derailleurs
2. Rear derailleur of the money changer
3. Operating modes of machines
4. Machine types
5. Completeness and consistency
6. Equivalence of Moore and Mealy machines
7. State reduction
8. Coding of machines
9. Design of complex circuits based on Moore and Mealy automata

Electronic realization of logical functions
1. CMOS logic families

Programmable logic circuits
1. Basic structure
2. PLD, FPGA
Teaching Methods

Seminar-like lectures and internship.

In class, the content is developed with the involvement of the students, documented with the help of a gap script, illustrated by examples and flanked and practiced by comprehension questions and 5-minute tasks. Exercises, control questions, tips and sample solutions serve the student for reworking and appropriation of the contents. Through application-oriented examples and tasks, the usefulness of terms and methods for the synthesis and analysis of sequential systems becomes clear.

In the internship, the workshops learned in the lecture will be consolidated in 5 workshops. The workshops cover the following topics: Boolean Algebra, Combinatorial Logic and Multiplexer, Sequential Circuits and Counters, Automata, FPGA Programming

Recommended Literature

C-10 MATERIAL ENGINEERING AND APPLIED SOLID-STATE PHYSICS

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Günther Benstetter</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 2112 Material Engineering and Applied Solid-State Physics</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Günther Benstetter</td>
</tr>
<tr>
<td>Semester</td>
<td>2</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 90 hours Total: 150 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Module Objective

Students learn the basic concepts of solid state construction, their properties as well as the manufacture, assessment and application of materials in electrical engineering.

The students achieve the following learning objectives:

Professional Skills

Knowledge:

1. Basic understanding of structure and physical properties of solids
2. Knowledge of manufacturing and test methods for materials of electrical engineering
3. Knowledge of the application of materials in electrical engineering
Competencies:

1. Ability to methodically assess basic properties and property changes of material systems
2. Ability to select materials according to given specification

Methodological Skills
Transfer of the acquired skills for the assessment and selection of materials to tasks and problems outside of electrical engineering.

Soft Skills
Students will be able to work out solutions to understanding, assessing and using materials both individually and within working groups.

Applicability in this and other Programs
For this degree program: C11, C15, C28, C31, C36, C40, C45, C46, C48, C50
For any other degree program: none

Entrance Requirements
Formally: none
In terms of content: C01, C03, C05

Learning Content
1. Fundamentals of materials
2. Structure of the atoms and the periodic table of the elements
3. Bonding modes in the solid state
4. Amorphous and crystalline solids
5. Structures of crystals
6. Orientation in the crystal lattice
7. Crystallization
8. Defects in crystals
9. Diffusion
10. Phases, alloys and state diagrams
11. Characteristic properties of solids
12. Mechanical inspection methods and properties
13. Electrical Properties
14. Optical properties of materials
15. Thermal properties of materials
16. Magnetism
17. Materials of electrical engineering
18. Conductor materials
19. Resistant materials
20. Contact materials
21. Metallic materials in metrology
22. Semiconductor materials
23. Superconductors
24. Dielectric materials
25. Magnetic materials
26. Current trends and developments

Teaching Methods

Seminar-like instruction
Whiteboard, Beamer, Visualizer

Recommended Literature

C-11 ELECTRONIC DEVICES

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Günther Benstetter</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 3113</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Günther Benstetter</td>
</tr>
<tr>
<td>Semester</td>
<td>3</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>6</td>
</tr>
<tr>
<td>ECTS</td>
<td>7</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 90 hours self-study: 120 hours Total: 210 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Entrance Requirements

keine

Recommended Literature

C-12 ELECTRICAL MEASUREMENT TECHNIQUES

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Stefan Zorn</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 3114 Electrical Measurement Techniques</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Stefan Zorn</td>
</tr>
<tr>
<td>Semester</td>
<td>3</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester periods per week (SWS)</td>
</tr>
<tr>
<td>ECTS</td>
</tr>
<tr>
<td>Workload</td>
</tr>
<tr>
<td>Type of Examination</td>
</tr>
<tr>
<td>Duration of Examination</td>
</tr>
<tr>
<td>Language of Instruction</td>
</tr>
</tbody>
</table>

Entrance Requirements

keine

Recommended Literature

C-13 CONTROL TECHNIQUES I

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Nikolaus Müller</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 3115 Control Techniques I</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Nikolaus Müller</td>
</tr>
<tr>
<td>Semester</td>
<td>3</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td></td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>4</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 60 hours Total: 120 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Module Objective

fundamental knowledge of system dynamics
solve easy calculations relating control systems engineering

Entrance Requirements

content-related: Mathematics: complex numbers, physics, Laplace transformation

Learning Content

introduction

description of dynamic systems in the Block diagram

characteristics of controls (Analysis)

control design (Synthesis)

structure measures (Cascade control)

process of frequency characteristic
Recommended Literature

C-14 BUSINESS ADMINISTRATION

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Thomas Geiß</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 2116 Business Administration</td>
</tr>
</tbody>
</table>
| Lecturers | Prof. Dr. Johann Nagengast
 | Prof. Dr. Michael Ponader |
| Semester | 2 |
| Duration of the module | 1 semester |
| Module frequency | annually |
| Course type | required course |
| Niveau | 3 |
| Semester periods per week (SWS) | 2 |
| ECTS | 3 |
| Workload | Time of attendance: 30 hours
 | self-study: 60 hours
 | Total: 90 hours |
| Type of Examination | written ex. 90 min. |
| Duration of Examination | 90 min. |
| Language of Instruction | German |

Entrance Requirements

keine

Recommended Literature

Module code: C-15
Module coordination: Prof. Dr. Werner Bogner
Course number and name: C 4117 Electronic Circuits I
Lecturer: Prof. Dr. Werner Bogner
Semester: 4
Duration of the module: 1 semester
Module frequency: annually
Course type: required course

Niveau:
Semester periods per week (SWS): 4
ECTS: 5

Workload:
Time of attendance: 60 hours
self-study: 90 hours
Total: 150 hours

Type of Examination: written ex. 90 min.
Duration of Examination: 90 min.
Language of Instruction: German

Module Objective
Ability to analyze and recognize analog semiconductors
Ability to design and dimension semiconductor circuits

Entrance Requirements
Formally: none
Content-related: fundamental of electrical engineering

Learning Content
- Introduction of
 - Tasks, applications of analog circuits
 - Network, network elements
 - Spellings, symbols
- Fundamentals of Analog Circuits
 - Linear two-ports
 - Nonlinear circuits
Recommended Literature

Wupper / Niemeyer: Elektronische Schaltungen II. Springer Verlag 1996.
C-16 MICROCOMPUTER TECHNOLOGY

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Andreas Penningsfeld</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 4118 Microcomputer Technology</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Andreas Penningsfeld</td>
</tr>
<tr>
<td>Semester</td>
<td>4</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td></td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>4</td>
</tr>
</tbody>
</table>
| Workload | Time of attendance: 60 hours
self-study: 60 hours
Total: 120 hours |
| Language of Instruction | German |

Entrance Requirements
keine

Recommended Literature

Prof. Penningsfeld Skript Mikrocomputertechnik.
Module Objective

Ability to solve tasks of signal processing using digital systems;

Ability to practice on computer simulations and on systems with embedded digital signal processors (DSPs)

Entrance Requirements

Formally: none;

content-related: Mathematics, complex numbers, linear algebra, integral transformation

Learning Content

Description of analog signals in the time domain and frequency domain

Description of time-discrete signals with the aid of the z-transform

Application environments Matlab and DSP

The discrete Fourier transformation (DFT) function Generators

Digital filters (FIR, IIR)
Recommended Literature

Module Objective

Ability to analyze an information transmission

Design of simple redundancy reducing or error-detecting and correcting codes

Analysis of lines of communications technology using the line theory

Perform simple transformations with the Smith chart

Calculation of line attenuation

Selection and specification of suitable antennas for concrete communications engineering tasks

Dimensioning of radio transmission lines using simple airshed models

Entrance Requirements

Formally: none

Content-related: Mathematics, fundamentals of electrical engineering
Learning Content

Fundamentals of information theory, coding (redundancy reduction, error detection and correction), transmission line theory

Characteristics of lossless line

Reflection coefficient

Impedance transformation, the Smith chart, lossy lines

Pulses on lossless lines, elementary idea cable types (two wirelines, coaxial)

Fundamentals of antenna technology, the key parameters of antennas

Embodiments of antennas, wave propagation mechanisms

Recommended Literature

J. Göbel: Kommunikationstechnik. Hüthig Verlag.

E. Pehl: Digitale und analoge Nachrichtenübertragung. Hüthig Verlag.

F. Gustrau: Hochfrequenztechnik.
C-19 ELECTRODYNAMICS

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Johann Plankl</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 4121 Electrodynamics</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Johann Plankl</td>
</tr>
<tr>
<td>Semester</td>
<td>4</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>undergraduate</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 90 hours Total: 150 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Module Objective

The module electrodynamics is a one-semester lecture. In the module the students basically deal with methods of classical electrodynamics. They learn the necessary steps to develop independent solutions for corresponding problems from the engineering field, whereby they are particularly enabled to critically question the selection of the corresponding methods and calculation procedures.

In the subject electrodynamics the students get to know typical models, methods and tasks from engineering practice, which can be worked on in the context of classical electrodynamics, together with corresponding solution procedures and strategies. The field-theoretical way of thinking of electromagnetism as an action-at-a-distance phenomenon is anchored.

Professional Skills

Students have knowledge of electrostatics, magnetostatics and electrodynamics in vacuum and matter. In addition, they are familiar with the concepts of electromagnetic oscillations and waves. The students are able to work conceptually and methodically. They know the most important physical models and correlations and have applied them in practical exercises. In particular, they know the basic assumptions and theories behind the phenomena to be described. They are also able to select suitable mathematical methods on the basis of a problem description and to systematically work out the solution on the basis of these methods. They have the
knowledge to interpret the results in a subject-specific way. All in all, the students can apply their acquired knowledge to engineering tasks in a practice-oriented way.

Methodological Skills

Depending on the task, students are able to identify and successfully apply appropriate calculation methods from a range of calculation methods. They can use scientific calculators and, if necessary, computer algebra software. The students have the ability to carry out independent research on the basis of more extensive exercises and to develop their existing knowledge independently. Occasionally, English problem texts are also issued.

Soft Skills

The students are aware of their responsibility as future engineers. They are in a position to discursively question problems among themselves, to justify the solutions argumentatively and to critically evaluate the results of their calculations.

Entrance Requirements

Formally: none;

Content-related: Mathematics for engineers

Learning Content

1. Elements of vector analysis
2. Electromagnetism in vacuum
2.1 Introduction
2.2 Phenomenology of a point charge
2.3 Charge densities and Dirac Delta Function
2.4 Electric current and current densities
2.5 Continuity equation
2.6 Coulomb's law of force in electrostatics
2.7 The electrostatic field
2.8 Ampere force law and magnetic field
2.9 The Law of Biot and Savart
2.10 The Basic Laws of Electrostatics and Magnetostatics
3. Electromagnetic fields in matter
3.1 Macroscopic media and matter fields
3.2 Matter in an electrostatic field
3.3 Matter in a static magnetic field
3.4 The electric field at interfaces
3.5 The magnetic field at interfaces
4. the scalar and vector potential
4.1 The electrostatic potential
4.2 The integral definition of the scalar potential
4.3 Displacement work within an electrostatic field
4.4 Potential equations of electrostatics
4.5 Electrostatic field energy
4.6 The electrical dipole
4.7 The vector potential and local gauge transformation
4.8 The field equations in potential representation
4.9 Magnetic multipole expansion
4.10 Magnetic field energy
5. Maxwell's Theory of Classical Electrodynamics
5.1 Preliminary remarks
5.2 Faraday law of induction
5.3 Differential formulation of the Maxwell equations
5.4 The Maxwell equations in matter
5.5 The Maxwell equations in integral form and their physical interpretation
5.6 The Maxwell equations in complex formulation for time-harmonic fields
5.7 Description of electromagnetic waves
6. Electromagnetic waves in vacuum and in matter
6.1 The homogeneous wave equations in vacuum
6.2 Wave propagation of monochromatic plane waves
6.3 The energy density of electromagnetic waves: Poynting's theorem

6.4 Generation of electromagnetic waves: the method of Greens functions

6.5 Radiation of the Hertzian dipole

Teaching Methods

Lectures and seminaristic lessons in alternation, solving problems during the lecture and independent extended training of the computing competence on the basis of weekly exercise sheets, detailed solutions to the exercise sheets are each given with a time delay of one week and are to be compared with the own solutions, if questions arise these are clarified in the lecture.

Remarks

The active participation of the students during the lecture and in the processing of the exercise sheets is particularly important through a discursive style. Challenge and encourage is the motto, so that they are catapulted from an initial passive attitude into a mode of activity.

Recommended Literature

Module Objectives

Ability to identify electromagnetic coupling paths

Ability of the application of European and international standards

Ability of the design emc-compliant design of electrical and electronic devices

Entrance Requirements

keine

Learning Content

Terms: terminology and representations of electromagnetic compliance

Coupling paths: Galvanic, capacitive, magnetic, electromagnetic

Standardization: Standardization bodies, European and international noun for the CE marking

EMC equipment design: Circuit boards, devices, EMC filter, shielding
Recommended Literature

C-21 ENGLISH FOR ENGINEERS

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Tanja Mertadana</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 7123 English for Engineers</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dozenten/innen für AWP und Sprachen</td>
</tr>
<tr>
<td>Semester</td>
<td>7</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>4</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 60 hours Total: 120 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>English</td>
</tr>
</tbody>
</table>

Module Objective

Englisch für Ingenieure (B2) aims to equip students with specialized language skills necessary for independent performance in a globalized electrical engineering sector. In doing so, it strives to deepen students’ relationship with the English language in relevant technical settings so that they can effectively and efficiently implement the language as a practical communication tool.

To this end, the module targets instruction of the four cardinal language skills (listening, reading, speaking, and writing) across a broad spectrum of core technical topics related to electrical engineering. Students also craft the content of their own learning through needs analyses and frequent immersive and self-directed projects.

Central to the module is optimizing fluency and communication skills; so too is cultivating a clear understanding of the finer points of textual meaning and meaning produced in dialogue with others. Through a variety of task-based speaking, listening and writing activities, students enhance their oral and aural production and expand their ability to produce clear, concise and coherent pieces of writing – be they in the form of emails, (technical) reports, or expository paragraphs on technical processes. Particular emphasis will be placed on honing students’ public speaking and team skills through work on a team presentation project for each course.
On completion of the module students will have achieved the following learning objectives:

Professional competencies

- Students will have an independent command of specialized technical terminology relevant to the field of electrical engineering. Command here refers to oral and written production as well as aural and reading comprehension.

- They will be in a position to deploy study skills such as close reading and coherent writing at a B2-level and for use in niche tasks for the electrical engineering sector.

- They will have gained substantial knowledge of B2-level language registers – both for formal study contexts and for semi-formal to formal professional contexts.

- They will have gained essential experience in presenting on topics related to technical English. The goal here is to package niche knowledge in the protocols of a clearly structured, effectively delivered piece of public speaking.

Methodological competencies

- Students will have enhanced their abilities to structure the acquisition of specialized terminology and grammatical items and practiced ways to internalize new language that yield optimal learning benefits.

- They will have extended and refined their practical research skills in English by engaging in at least two immersion projects – for example, by being asked to present on a discipline-specific topic in an individual or team presentation.

Social competencies

- Students will have gained valuable experience in training other personal effectiveness skills such as team work, integrity, and reliability.

- They will have reflected on the learning benefits derived from several immersion projects.

Entrance Requirements

The minimum entry-level requirement is a B2-level of English according to the Common European Framework of Reference for Language (CEFR). B2-level approximately equates to a good mark in English exam of the German A-levels (Abitur).

Learning Content

Course content is divided across a set of mandatory topics that the lecturer chooses (60% of content) and non-mandatory topics that students elect to work on (40% of content).
Mandatory topics include, but are not restricted to, the following:
1. Mathematical operations and numbers
2. Measurements and units
3. Geometric aspects
4. Fundamentals of electrical engineering (e.g. circuits, physics, control systems)
5. Materials and their properties
6. Case study on an area related to electrical engineering (e.g. Tesla)
7. Communication skills (e.g. presentations)
8. Grammar items (e.g. passive vs active, tenses, conditionals)

Examples of non-mandatory topics include the following:
1. Renewable energy
2. E-mobility
3. Computing
4. Telecommunications
5. Tools and instruments
6. Signal processing

Teaching Methods

Instruction and learning methods focus on training the four cardinal language skills (speaking, listening, reading, and writing) and on enhancing professional and social competencies. They include group discussions and group projects, individual and team work (e.g. individual and group presentations), real- and role-playing, close reading and listening activities, grammar games, method of loci, running dictations, translations, peer feedback and review, work with learning stations, and various follow-up viewing and writing activities. Study assignments will be set on a weekly basis.

Recommended Literature

C-22 SEMINAR

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Günther Benstetter</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 7124 New Module</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Günther Benstetter</td>
</tr>
<tr>
<td>Semester</td>
<td>7</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>undergraduate</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>2</td>
</tr>
<tr>
<td>ECTS</td>
<td>2</td>
</tr>
</tbody>
</table>
| Workload | Time of attendance: 30 hours
| | self-study: 30 hours
| | Total: 60 hours |
| Type of Examination | oral examination |
| Language of Instruction | German |

Entrance Requirements

keine

Recommended Literature

C-23 GENERAL ELECTIVE

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Tanja Mertadana</td>
</tr>
</tbody>
</table>
| Course number and name | Z 4100 General Scientific Elective II
 | Z3100 General Elective I |
| Lecturer | Dozenten/innen für AWP und Sprachen |
| Semester | 3, 4 |
| Duration of the module | 2 semester |
| Module frequency | annually |
| Course type | required course |
| Niveau | |
| Semester periods per week (SWS) | 4 |
| ECTS | 4 |
| Workload | Time of attendance: 60 hours
 self-study: 60 hours
 Total: 120 hours |
| Type of Examination| Prüfung Sprachenzentrum / AWP |
| Language of Instruction | German |

Entrance Requirements

keine
C-24 BACHELOR THESIS

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Martin Jogwich</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 7125 Bachelor Thesis</td>
</tr>
<tr>
<td>Semester</td>
<td>7</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>halbannually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td></td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>0</td>
</tr>
<tr>
<td>ECTS</td>
<td>12</td>
</tr>
</tbody>
</table>
| Workload | Time of attendance: 0 hours
 | self-study: 360 hours
 | Total: 360 hours |
| Type of Examination | bachelor thesis |
| Language of Instruction| German |

Applicability in this Program

C-24 Bachelorarbeit

Entrance Requirements

keine
C-25 INTERNSHIP

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Detlef Brumbi</td>
</tr>
</tbody>
</table>
| Course number and name | C 5126 Internship
C 5127 Practical Seminar |
| Lecturer | Prof. Dr. Detlef Brumbi |
| Semester | 5 |
| Duration of the module | 1 semester |
| Module frequency | annually |
| Course type | required course |
| Semester periods per week (SWS) | 2 |
| ECTS | 26 |
| Workload | Time of attendance: 0 hours
self-study: 780 hours
Total: 780 hours |
| Type of Examination | internship certification |
| Language of Instruction | German |

Module Objective

Anchoring and expanding the already learned knowledge through practical experience.
The importance of teamwork to get to know target group-oriented presentation of the tasks during the plant work and the results achieved in the work.

Anchoring and expanding the already learned knowledge through practical experience.
The importance of teamwork to get to know target group-oriented presentation of the tasks during the plant work and the results achieved in the work.

C 5126 INTERNSHIP

Objectives

Anchoring and expanding the already learned knowledge through practical experience.
The importance of teamwork to get to know target group-oriented presentation of the tasks during the plant work and the results achieved in the work.

Learning Content

Individual
Entrance Requirements
Formally: at least 70 ETCS credits;
Content-related: application of the achievement knowledge of the study program

Type of Examination
internship certification

C 5127 PRACTICAL SEMINAR

Objectives
Anchoring and expanding the already learned knowledge through practical experience. The importance of teamwork to get to know target group-oriented presentation of the tasks during the plant work and the results achieved in the work.

Learning Content
Individual

Entrance Requirements
Formally: at least 70 ECTS;
Content-related: application of the achieved knowledge of the study program

Type of Examination
written course assessment, oral course assessment
C-26 PRACTICAL TRAINING SEMINAR

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Detlef Brumbi</td>
</tr>
</tbody>
</table>
| Course number and name | C 5128 Practical Training Seminar I
 | C 5129 Practical Training Seminar II |
| Semester | 5 |
| Duration of the module | 1 semester |
| Module frequency | halbannually / annually |
| Course type | required course |
| Semester periods per week (SWS) | 4 |
| ECTS | 4 |
| Workload | Time of attendance: 120 hours
 | self-study: 120 hours
 | Total: 240 hours |
| Language of Instruction | German |

Module Objective

Studying contents being directly related to practical activities as an electrical engineer

C 5128 PRACTICAL TRAINING SEMINAR I

Objectives

Studying contents being directly related to practical activities as an electrical engineer

Learning Content

diverse

Entrance Requirements

at least 70 ETCS credits

Type of Examination

C 5129 PRACTICAL TRAINING SEMINAR II

Objectives

Studying contents being directly related to practical activities as an electrical engineer
Learning Content
Diverse

Entrance Requirements
at least 70 ECTS credits

Type of Examination
Module Objective

The aim is for the students to broaden their knowledge in control engineering and to be prepared for typical tasks in the industry. After completing the subject, the students have achieved the following learning objectives:

- They are able to construct root loci and thereby develop control units
- Students can explain the special effects of a digital controller
- They know the basics of the analysis of control circuits with switching regulators
- Students are capable to represent controlled systems in state space
- They can model dynamic control paths in Matlab / Simulink and analyze their behavior
- Students are capable to solve complex problems in the field of control engineering

Entrance Requirements

Formally: at least 70 ECTS credits

In terms of content:

- Mathematics: Linear algebra, Laplace
- Control engineering: Understanding dynamic systems

Module Code

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-27</th>
</tr>
</thead>
</table>

Module Coordination

<table>
<thead>
<tr>
<th>Prof. Dr. Nikolaus Müller</th>
</tr>
</thead>
</table>

Course Number and Name

<table>
<thead>
<tr>
<th>C 6130</th>
</tr>
</thead>
</table>

Lecturer

<table>
<thead>
<tr>
<th>Prof. Dr. Nikolaus Müller</th>
</tr>
</thead>
</table>

Semester

<table>
<thead>
<tr>
<th>6</th>
</tr>
</thead>
</table>

Duration of the Module

<table>
<thead>
<tr>
<th>1 semester</th>
</tr>
</thead>
</table>

Module Frequency

<table>
<thead>
<tr>
<th>annually</th>
</tr>
</thead>
</table>

Course Type

<table>
<thead>
<tr>
<th>required course</th>
</tr>
</thead>
</table>

Niveau

<table>
<thead>
<tr>
<th>4</th>
</tr>
</thead>
</table>

Semester Periods per Week (SWS)

<table>
<thead>
<tr>
<th>4</th>
</tr>
</thead>
</table>

ECTS

<table>
<thead>
<tr>
<th>6</th>
</tr>
</thead>
</table>

Workload

<table>
<thead>
<tr>
<th>Time of attendance: 60 hours self-study: 120 hours Total: 180 hours</th>
</tr>
</thead>
</table>

Type of Examination

<table>
<thead>
<tr>
<th>written ex. 120 min.</th>
</tr>
</thead>
</table>

Duration of Examination

<table>
<thead>
<tr>
<th>120 min.</th>
</tr>
</thead>
</table>

Language of Instruction

<table>
<thead>
<tr>
<th>German</th>
</tr>
</thead>
</table>

Learning Content

1. Root locus
 1.1. Design rules
 1.2. Analysis and synthesis of control circuits
2. Digital control circuits
 2.1. Description in the z-area
 2.2. Quasi-continuous design
3. Switching regulators
 3.1. Analysis for first-order control paths
 3.2. Analysis for second-order control paths
4. Controller in state space
 4.1. Establishment of state equations
 4.2. Draft according to the pole placement method

Teaching Methods

Seminar-like instruction, exercises

Recommended Literature

C-28 AUTOMATION TECHNOLOGY

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Martin Jogwich</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 6131 Automation Technology</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Martin Jogwich</td>
</tr>
<tr>
<td>Semester</td>
<td>6</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>undergraduate</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 120 hours Total: 180 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Module Objective

Thorough knowledge of the structures of automation and process control systems, including their representations

Thorough knowledge of all aspects of sensory operation in automation systems (using selected process technology examples)

Entrance Requirements

Formally: at least 70 ECTS credits;

Content-related: Basic knowledge of metrology and control engineering, basics in mathematics and physics

Learning Content

Usage of sensors in automation systems and their aspects (including security, accuracy, cross-influences, influencing the process, signal transmission)

Automation and process control systems (tasks, structures, representations)
Interaction between sensors, control systems and actuators in automation system
(using selected process technology examples)

Recommended Literature

S. Hesse / G. Schnell: Sensoren für die Prozess- und Fabrikautomation.

C. Karaali: Grundlagen der Steuerungstechnik. Springer/Vieweg Verlag.

L. Litz: Grundlagen der Automatisierungstechnik. Oldenbourg Verlag.

G. Strohmann: Automatisierungstechnik. Oldenbourg Verlag.

G. Strohrmann: Automatisierungstechnik verfahrenstechnischer Prozesse. Oldenbourg Verlag.

F. Tröster: Steuerungs- und Regelungstechnik für Ingenieure. Oldenbourg Verlag.

C-29 SENSOR-ACTUATOR NETWORKS

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Andreas Grzemba</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 6132 Sensor-Actuator Networks</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Andreas Grzemba</td>
</tr>
<tr>
<td>Semester</td>
<td>6</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td></td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
</tbody>
</table>
| Workload | Time of attendance: 60 hours
self-study: 120 hours
Total: 180 hours |
| Type of Examination | written ex. 90 min. |
| Duration of Examination | 90 min. |
| Language of Instruction | German |

Entrance Requirements

keine

Recommended Literature

AVB/TSN IEEE802.3 Standard-Familie
Module code	C-30
Module coordination | Prof. Dr. Peter Firsching
Course number and name | C 7133 Electric Machines and Drives
Lecturer | Prof. Dr. Peter Firsching
Semester | 7
Duration of the module | 1 semester
Module frequency | annually
Course type | required course
Niveau | undergraduate
Semester periods per week (SWS) | 4
ECTS | 6
Workload | Time of attendance: 60 hours self-study: 120 hours Total: 180 hours
Type of Examination | written ex. 90 min.
Duration of Examination | 90 min.
Language of Instruction | German

Module Objective

To introduce students to electrical machines and power systems

Entrance Requirements

Formally: at least 80 ECTS credits;
Content-related: fundamentals of ET, physics for engineers, etc.

Learning Content

The course content may include the following topics:

DC machines
AC machine windings
Space vector theory
Steady state analysis of AC machines (polyphase and single phase)
Transmission lines
Power system representation
Power flow

Recommended Literature

Module Objective

The course covers power electronics, their components, circuits and applications.

In the field of power electronics, students learn the application of the components and circuits of the power electronics and their applications.

The students achieve the following learning objectives:

Professional Skills

The students learn the structure and mode of operation of passive and active components of power electronics. Here, the parasitic properties are in the foreground.

The circuits are subdivided into network-controlled and self-commutated circuits. Here, the students know not only the circuits themselves but also the mode of operation and their design. The self-guided circuits are the focus.

Methodological Skills

The students learn the structural composition of components in circuit technology as well as in systems engineering. You can apply the component design methodology to a variety of circuits.
Soft Skills

Skills lie in the detailed application of mathematical and technical procedures.

Applicability in this and other Programs

For this degree program: C 32

For any other degree program: none

Entrance Requirements

Formally: at least 80 ECTS Credits, successful completion of internship

In terms of content: C01, C02, C05, C06, C10, C11, C15

Learning Content

1. Components
 1.1. Capacitors
 1.2. Choke
 1.3. Transformers
 1.4. Diodes
 1.5. MOSFET
 1.6. IGBT
 1.7. Thyristor

2. Mains-controlled converters
 2.1. Overview
 2.2. Center tap circuits
 2.3. Bridge circuits
 2.4. Cyclo converter

3. Self-commutated power converters
 3.1. DC chopper basic circuits
 3.2. Multi-quadrant converter
 3.3. Single-phase pulse converter
3.4. Three-phase pulse converter
3.5. Applications for pulse converters
3.6. Multilevel converters
3.7. Matrix converter

Teaching Methods

Seminar-like instruction

During lectures the simulations program LTspice is being used. This software is a helpful tool for independent studies.

Recommended Literature

Module code	C-32
Module coordination	Prof. Dr. Nikolaus Müller
Course number and name	C 7135 Automotive Electronics
Lecturer	Prof. Dr. Nikolaus Müller
Semester	7
Duration of the module	1 semester
Module frequency	annually
Course type	required course
Niveau	undergraduate
Semester periods per week (SWS)	4
ECTS	6
Workload	Time of attendance: 60 hours
self-study: 120 hours	
Total: 180 hours	
Type of Examination | written ex. 90 min.
Duration of Examination | 90 min.
Language of Instruction | German

Module Objective

Understanding of the specific challenges of the electronics in motor vehicle

Overview of common techniques in various fields of vehicle electronics

Entrance Requirements

Formally: at least 70 ECTS credits;

Content-related: Fundamentals of electrical engineering

Learning Content

History and economic importance

Drive (powertrain) - combustion engines, electric and hybrid drives, sensors, actuators

Chassis systems

Systems in the vehicle body

Electric infrastructure: electrical system, communication

Control devices: hardware and software and its development
Recommended Literature

C-33 ROBOTICS

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Nikolaus Müller</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 6136 Robotics</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Nikolaus Müller</td>
</tr>
<tr>
<td>Semester</td>
<td>6</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td></td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
</tbody>
</table>
| Workload | Time of attendance: 60 hours
 self-study: 120 hours
 Total: 180 hours |
| Language of Instruction | German |

Entrance Requirements

keine

Recommended Literature

Springer/Vieweg 2013.

K. Brillowsk: Einführung in die Robotik - Auslegung und Steuerung serieller Roboter.
Shaker Verlag 2005.

H. Maier: Grundlagen der Robotik. VDE Verlag 2016.

C-34 POWER ENGINEERING PLANTS

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Reinhard Schlosser</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 6137 Power Engineering Plants</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Reinhard Schlosser</td>
</tr>
<tr>
<td>Semester</td>
<td>6</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>4</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 120 hours Total: 180 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Entrance Requirements

keine

Recommended Literature

C-35 FACTORY AUTOMATION

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Terezia Toth</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 6138 Factory Automation</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Terezia Toth</td>
</tr>
<tr>
<td>Semester</td>
<td>6</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td></td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 120 hours Total: 180 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Entrance Requirements

keine

Recommended Literature

Ausbildungsunterlagen der Fa. Siemens:
https://www.siemens.com/global/de/home/unternehmen/nachhaltigkeit/ausbildung/see.html
C-36 SYSTEM TECHNOLOGY FOR RENEWABLE ENERGY

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Günter Keller</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 6139 System Technology for Renewable Energy</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Günter Keller</td>
</tr>
<tr>
<td>Semester</td>
<td>6</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td></td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
</tbody>
</table>
| Workload | Time of attendance: 60 hours
| | self-study: 120 hours
| | Total: 180 hours |
| Language of Instruction | German |

Module Objective

Ability to design and sizing solar electric systems for stand-alone and grid-connected operations

Ability of the design and sizing of solar thermal plants

Determining the suitability of renewable energy systems

Entrance Requirements

keine

Learning Content

Energy situation: consumption, energy

Solar energy: radiation available, photovoltaic, grid system, grid-connected systems, solar thermal systems, solar thermal power generation

Wind energy: structure, function and regulation of wind turbines

Geothermal energy, wave energy, hydro power plants
Recommended Literature

Veröffentlichungen des IEEE

C-37 COMPUTER-AIDED SIMULATION IN ELECTRICAL POWER ENGINEERING

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Reinhard Schlosser</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 7140 Computer-Aided Simulation in Electrical Power Engineering</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Reinhard Schlosser</td>
</tr>
<tr>
<td>Semester</td>
<td>7</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td></td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 120 hours Total: 180 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Entrance Requirements

keine

Recommended Literature

C-38 Power Supply Technology

<table>
<thead>
<tr>
<th>Module Code</th>
<th>C-38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Coordination</td>
<td>Prof. Dr. Günter Keller</td>
</tr>
<tr>
<td>Course Number and Name</td>
<td>C 6141 Power Supply Technology</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Günter Keller</td>
</tr>
<tr>
<td>Semester</td>
<td>6</td>
</tr>
<tr>
<td>Duration of the Module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module Frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course Type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>undergraduate</td>
</tr>
<tr>
<td>Semester Periods Per Week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 120 hours Total: 180 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Module Objective

Ability of the design and dimensioning of unregulated and linearly regulated power supply circuits

Ability of the design and dimensioning switched power supply circuits

Entrance Requirements

keine

Learning Content

Terms: terminology and characteristics of power supplies

Components of power supply technology

Unregulated and linear controlled circuits

Switch mode technology

Control of switching power supplies: modeling

Various simulation controller structures
Recommended Literature

C-39 RF - MEASUREMENT / MICROWAVE CIRCUIT DESIGN

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Matthias Wuschek</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 7142 RF - Measurement / Microwave Circuit Design</td>
</tr>
</tbody>
</table>
| Lecturers | Prof. Dr. Werner Bogner
Prof. Dr. Matthias Wuschek |
| Semester | 7 |
| Duration of the module | 1 semester |
| Module frequency | annually |
| Course type | required course |
| Niveau | undergraduate |
| Semester periods per week (SWS) | 4 |
| ECTS | 6 |
| Workload | Time of attendance: 60 hours
self-study: 120 hours
Total: 180 hours |
| Language of Instruction | German |

Module Objective

- The student knows the basic principles of measurement and equipment of RF and Communications Engineering

- He can specify which sizes are determined by the respective devices and he knows the Opportunities of boundaries of different measurement methods

- The practicalities of the instruments within the laboratory experiments are practiced intensively

- Deep knowledge of the application of high-frequency circuits in the communication technology and its metrological characterization

- Ability to simulate high-frequency circuits of the communication equipment to size and design with commercial microwave CAD software

Entrance Requirements

Keine
Learning Content

Laboratory experiments:
- amplitude modulation
- frequency modulation
- Dig. Modulation method u. GSM mobile
- UMTS
- DVB T
- LNA
- scattering parameters
- oscillator
- mixer

Recommended Literature

Käs / Pauli: Mikrowellentechnik. Franzis Verlag.
B. Schiek: Grundlagen der Hochfrequenzmesstechnik. Springer Verlag.
Thumm / Wiesbeck: Hochfrequenzmesstechnik. Springer Verlag.
Rauscher: Grundlagen der Spektralanalyse. Rohde & Schwarz.

C-40 RADIO FREQUENCY (RF) ELECTRONICS

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Werner Bogner</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 6143 High Frequency Electronics</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Werner Bogner</td>
</tr>
<tr>
<td>Semester</td>
<td>6</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 120 hours Total: 180 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Module Objective

In the subject RF Electronics, students generally deal with the special features of radio frequency (RF) components and circuits with a focus on RF amplifiers. They will learn the steps needed to deploy RF components on their own and will be able to design, analyze, optimize and evaluate circuits.

The students learn the necessary steps to independently apply RF components and RF cables as well as to develop RF amplifiers. They are able to analyze and evaluate RF circuits. Students gain the ability to design, simulate, and optimize RF semiconductor amplifiers.

The students achieve the following learning objectives:

Professional Skills

The students know the most important modern components of RF technology and understand how it works.

The students understand the peculiarities of high RF circuits, can describe them and are familiar with scattering parameters and their application. They know programs for the simulation of RF circuits and RF structures.
Students are familiar with different transmission line structures for RF applications and can dimension, rate and select them for the application.

Methodological Skills

The students can analyze and apply modern components of RF technology. They can judge the possible uses of these components.

Students have the ability to analyze and apply RF circuits, in particular to adapt and optimize RF amplifiers. They have the ability to design and dimension simple RF circuits.

Soft Skills

The students are able to critically evaluate RF components and circuits.

Entrance Requirements

Formally: at least 80 ETCS credits

In terms of content: telecommunication I, circuit technology I, fundamentals of ET

Learning Content

1. Active components of RF technology
2. Transmission lines (waveguide)
 2.1. TEM waveguide
 2.2. Basics of Transmission Line Theory
 2.3. Waveguide (hollow waveguide)
 2.4. Planar microwave lines - stripline
3. Basics of RF circuit development
 3.1. Impedance transformation
 3.2. Presentation and dimensioning of linear circuits

Teaching Methods

Seminar-like instructions, exercises, computer simulations
Recommended Literature

C-41 MAINS-SUPPLIED COMMUNICATION

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Matthias Wuschek</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 6144 Mains-Supplied Communication</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Matthias Wuschek</td>
</tr>
<tr>
<td>Semester</td>
<td>6</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>undergraduate</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 120 hours Total: 180 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Module Objective

- Digital modulation of a pulse carrier (PAM, PCM)
- Digital signal transmission in baseband, application examples (ISDN)
- Broadband transmission via subscriber lines (DSL-X)
- Important basic facts of optics, as far as it to understand the opt. transmission technology are important
- Different fiber types: design and function way forward and disadvantages, major application areas
- Design and operation of the main transmission and receiving elements of the opt. telecommunications (LED, LD, PIN photodiode, APD; possibilities of amplification of light signals)
- Significant components of the fiber optic transmission technology (links, couplers, switches, etc.), dimensioning of simple fiber optic networks
- Measuring the opt. telecommunications (power meter, spectrum analyzer, OTDR)
Entrance Requirements

Formally: at least 70 ETCS credits;

In relation to content: telecommunication I, circuit technology I, semiconductor electronics

Learning Content

Sampling theorem, PAM, PCM, ISDN, DSL-X;

Optical foundations; fiber optics; construction of optical transmission systems; transmitting and receiving elements, opt. amp;

Detachable and non-detachable fiber optic connections, and optical coupler switches, planning, measurement

Recommended Literature

D. Eberlein: DWDM. Verlag Dr. M. Siebert GmbH.

B. Bundschuh / J. Himmel: Optische Informationsübertragung. Oldenbourg Verlag.

V. Brückner: Optische Nachrichtentechnik. Teubner Verlag.

Module Objective

- Capability to describe the mobile channel in terms of its essential transmission characteristics
- Implementation of the basic steps for planning cellular networks (coverage, interference, capacity)
- Practical application: GSM/UTMS/DVB

Entrance Requirements

Formally: at least 70 ETCS

In relation to content: Fundamentals of ET, mathematics, telecommunication I and II

Learning Content

Historical development;

Key features of the mobile radio channel (path loss, shadowing, multipath, fading);

Design cellular wireless networks, basic knowledge of architecture and operation of a GSM network, in addition some aspects of other networks (UMTS) introduction to digital TV broadcast (DVB)
Recommended Literature

J. Schiller: Mobilkommunikation. Verlag Addison-Wesley.

N. Geng / W. Wiesbeck: Planungsmethoden für die Mobilkommunikation. Springer Verlag.

Module Objective

The students first deal with the disturbed transmission channel. They will learn important description variables for distortion, crosstalk and noise. In the next step, important analogue modulation methods will be introduced, whereby their description variables and signal form as well as examples of modulators and demodulators will be presented and explained. Then important methods of digital modulation of a sine-wave carrier (ASK, FSK, MSK, M-PSK, M-QAM) are presented and compared with each other. For all important analog and digital modulation methods, the students get to know essential practical fields of application. After a presentation of the spread spectrum transmission an introduction into the transmitter and receiver technology takes place.

The students achieve the following learning objectives:

Professional Skills

The students know and understand important fault phenomena occurring during signal transmission as well as their description variables.

The students know and understand important methods of analog or digital modulation of a sine-wave carrier and can compare these with regard to their performance.
The students know and understand elementary methods for spread spectrum signal transmission

The students know and understand the functionality of the various modules in the transmitter and receiver. They know the advantages and disadvantages of a heterodyne receiver compared to the straight receiver.

Methodological Skills

The students are able to dimension simple analog or modulated transmission links (in particular with regard to bandwidth requirements and interference immunity).

The students can explain the functionality of elementary circuits for the generation of modulated signals or for demodulation.

The students have the ability to independently research and develop existing basic knowledge.

Soft Skills

The students are able to explain the basic procedures of the analogue and digital modulation methods, to justify them reasonably and to critically evaluate them.

Entrance Requirements

Formally: at least 70 ETCS credits;

In terms of content: fundamentals of ET, mathematics

Learning Content

1. Introduction to the lecture
2. The faulty transmission channel
 2.1. Introduction
 2.2. Calculating with logarithmic quantities
 2.3. Linear and nonlinear distortions
 2.4. Crosstalk
 2.5. Noise
3. Introduction to the modulated signal transmission
 3.1. Advantages of modulated signal transmission
 3.2. Overview of common modulation methods
3.3. Linear and non-linear modulation methods
3.4. Abbreviations

4. Analog modulation methods
4.1. The sine-wave carrier and his description
4.2. Amplitude modulation
4.3. Frequency modulation
4.4. Quadrature Amplitude modulation
4.5. Applications

5. Digital modulation methods
5.1. Basic methods
5.2. Basics
5.3. Amplitude shift keying ASK
5.4. Phase shift keying PSK
5.5. Frequency shift keying FSK
5.6. Minimum Shift Keying MSK
5.7. Hybrid modulation methods (QAM)
5.8. Synchronization method
5.9. Spread Spectrum methods

Teaching Methods
Seminar-like instruction, exercises

Remarks
Lesson support through the online learnmanagementsystem iLearn

Recommended Literature
J. Göbel: Kommunikationstechnik. Hüthig Verlag.
E. Pehl: Digitale und analoge Nachrichtenübertragung. Hüthig Verlag.

M. Meyer: Kommunikationstechnik. Vieweg Verlag.

C-44 COMMUNICATION TECHNOLOGY / NETWORK ENGINEERING

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Terezia Toth</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 6147 Communication Technology / Network Engineering</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Terezia Toth</td>
</tr>
<tr>
<td>Semester</td>
<td>6</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td></td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 120 hours Total: 180 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Entrance Requirements

keine

Recommended Literature

C-45 ELECTRONIC CIRCUITS II

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Werner Bogner</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 7148 Electronic Circuits II</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Werner Bogner</td>
</tr>
<tr>
<td>Semester</td>
<td>7</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td>undergraduate</td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 120 hours Total: 180 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Module Objective

- Ability to analyze and apply analog semiconductor circuits of news and wireless technology
- Ability to design, to dimension and optimize circuits of news and radio technology
- Ability to integrate circuits of news and radio technology to more complex system components
- Ability to analyze and to optimize systems of communications and wireless technology

Entrance Requirements

Formally: at least 80 ETCS credits;
Content-related: circuit technology I, high-frequency electronics

Last update

Learning Content

- Transmitter, receiver, dynamics
- Passive RF circuits waveguide n-gates, filters, couplers
- RF amplifier circuits VGA, selective, broadband, power amplifier
- Oscillators and signal generators RC, LC, quartz oscillators, noise performance and frequency stability, PLL
- Mixers and frequency converters additive and multiplicative mixture frequency doubling diode and transistor mixer embodiments and circuit implementations
- Switched capacitor circuits

Recommended Literature

C-46 PRINCIPLES OF INTEGRATED CIRCUITS AND SYSTEMS

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Günther Benstetter</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 6149 Principles of Integrated Circuits and Systems</td>
</tr>
</tbody>
</table>
| Lecturers | Prof. Dr. Günther Benstetter
 | Prof. Dr. Werner Frammelsberger |
| Semester | 6 |
| Duration of the module | 1 semester |
| Module frequency | annually |
| Course type | required course |
| Niveau | |
| Semester periods per week (SWS) | 4 |
| ECTS | 6 |
| Workload | Time of attendance: 60 hours
 self-study: 120 hours
 Total: 180 hours |
| Type of Examination | written ex. 90 min. |
| Duration of Examination | 90 min. |
| Language of Instruction | German |

Entrance Requirements

keine

Recommended Literature

C-47 RF - CIRCUITS

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Detlef Brumbi</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 7150 RF - Circuits</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Detlef Brumbi</td>
</tr>
<tr>
<td>Semester</td>
<td>7</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td></td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours</td>
</tr>
<tr>
<td></td>
<td>self-study: 120 hours</td>
</tr>
<tr>
<td></td>
<td>Total: 180 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Entrance Requirements

keine

Recommended Literature

F. Gustrau: Hochfrequenztechnik - Grundlagen der mobilen Kommunikationstechnik, Hanser 2013

C. Timmermann: Hochfrequenzelektronik mit CAD, Band 1, Profund-Verlag 2003.

C-48 INTRODUCTION TO OPTOELECTRONICS AND LASER TECHNOLOGY

<table>
<thead>
<tr>
<th>Module code</th>
<th>C-48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordination</td>
<td>Prof. Dr. Franz Daiminger</td>
</tr>
<tr>
<td>Course number and name</td>
<td>C 6151 Introduction to Optoelectronics and Laser Technology</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. Franz Daiminger</td>
</tr>
<tr>
<td>Semester</td>
<td>6</td>
</tr>
<tr>
<td>Duration of the module</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Course type</td>
<td>required course</td>
</tr>
<tr>
<td>Niveau</td>
<td></td>
</tr>
<tr>
<td>Semester periods per week (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Workload</td>
<td>Time of attendance: 60 hours self-study: 120 hours Total: 180 hours</td>
</tr>
<tr>
<td>Type of Examination</td>
<td>written ex. 90 min.</td>
</tr>
<tr>
<td>Duration of Examination</td>
<td>90 min.</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>German</td>
</tr>
</tbody>
</table>

Entrance Requirements

keine

Recommended Literature

Module code	C-49
Module coordination	Prof. Dr. Detlef Brumbi
Course number and name	C 6152 Production / Quality Assurance in Electronics
Lecturer	Prof. Dr. Detlef Brumbi
Semester	6
Duration of the module	1 semester
Module frequency	annually
Course type	required course
Niveau	
Semester periods per week (SWS)	4
ECTS	6
Workload	Time of attendance: 60 hours
self-study: 120 hours	
Total: 180 hours	
Language of Instruction | German

Entrance Requirements
keine

Recommended Literature
Fertigungstechnik:

Wahrscheinlichkeitstheorie/Statistik:

bzw. JCGM 200:2008: International vocabulary of metrology — Basic and general concepts and associated terms (VIM)

Qualitätssicherung:

C-50 DIGITAL IMAGE PROCESSING

Module code | C-50
Module coordination | Prof. Dr. Martin Jogwich
Course number and name | C 6153 Digital Image Processing
Lecturer | Prof. Dr. Martin Jogwich
Semester | 6
Duration of the module | 1 semester
Module frequency | annually
Course type | required course
Niveau | undergraduate
Semester periods per week (SWS) | 4
ECTS | 6
Workload | Time of attendance: 60 hours
self-study: 120 hours
Total: 180 hours
Type of Examination | written ex. 90 min.
Duration of Examination | 90 min.
Language of Instruction | German

Module Objective

Through knowledge of analog and digital image acquisition, preprocessing and processing equipment from both a technical and software engineering perspective, as well as the ability to handle an image processing system.

Entrance Requirements

Formally: at least 80 ETCS credits;
Content-related: fundamentals of ET, physics, mathematics, aso

Learning Content

Fundamentals of image acquisition (modern lightning technology, optical illustration, light sensors, camera shot types, data transfer and compression);
Basic image processing

Remarks

Admission requirements for the exam: successful completion of laboratory field work
Recommended Literature

J. Beyerer / F. P. Leon / Chr. Frese: Automatische Sichtprüfung, Springer/Vieweg

W. Burger / M.J. Burge: Digitale Bildverarbeitung, Springer

C. Demant / B. Streicher-Abel / A. Springhoff: Industrielle Bildverarbeitung, Springer

A. Erhardt: Einführung in die digitale Bildverarbeitung, Vieweg/Teubner

Th. Hermes: Digitale Bildverarbeitung, Hanser

B. Jähne: Digitale Bildverarbeitung, Springer