

Modulhandbuch Master Bau- und Umweltingenieurwesen

Fakultät Bauingenieurwesen und Umwelttechnik

Prüfungsordnung 22.03.2023

Stand: Di. 18.03.2025 11:52

		±
		1
•	MBU-01 Baukonstruktion II und Entwurf	4
•	MBU-02 FEM: Grundlagen und Anwendungen der Methoder Finiten Elemente	
u		
•	MBU-03 Projektmanagement für Bau- und Umweltingeni 11	еиге
•	MBU-04 Mathematik III	14
•	MBU-05 Ausgewählte Kapitel der Wasserwirtschaft	17
•	MBU-06 Brückenbau	21
•	MBU-07 Metallbau II	24
•	MBU-08 Holzbau II	26
•	MBU-09 Geotechnik II	29
•	MBU-10 Bausanierung und Brandschutz	32
•	MBU-11 Grundlagen der Baudynamik	35
•	MBU-12 Verkehrswegebau II	38
•	MBU-13 Bauleitplanung II und Verkehrsplanung	41
•	MBU-14 Nachhaltiges Bauen II	44
•	MBU-15 Bauphysik II	47
•	MBU-16 Messen, Steuern, Regeln	51
•	MBU-17 Recycling und Entsorgung	54
•	MBU-18 Industrieabwasserreinigung und Toxikologie	57
•	MBU-19 Gebäudetechnik II	61
•	MBU-20W Massivbau III	65
•	MBU-21W Praxis der Baudynamik	69
•	MBU-22W Digitales Planen und Bauen (BIM)	73
•	MBU-23W Schlüsselfertigbau/ Technischer Ausbau	76
•	MBU-24W Praxis des Bau- und Umweltrechts	78
•	MBU-25W Advanced English	81

•	MBU-26W Informatik II	86
•	MBU-27W Regenerative Energien II	89
•	MBU-28W Grundwasserschutz und Wasseraufbereitung	92
•	MBU-29W Gesamtenergieeffizienz von Gebäuden	95
•	MBU-30W Unternehmensrechnung und Controlling	98
•	MBU-31F Forschungsprojekt "Energietechnik"	101
•	MBU-32F Forschungsprojekt "Wasser"	104
•	MBU-33 Masterarbeit	107

OMBU-01 BAUKONSTRUKTION II UND ENTWURF

Modul Nr.	MBU-01
Modulverantwortliche/r	Prof. Konrad Deffner
Kursnummer und Kursname	Baukonstruktion II und Entwurf
Lehrende	Prof. Konrad Deffner
Semester	Sommer
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	Portfolio
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden erlangen vertiefte Kenntnisse über Methoden und Grundlagen der Hochbauplanung und spielen anhand eines konkreten Projekts aus dem Hochbau die Prozesse und Abläufe bei der Entwicklung einer Hochbauplanung in mehreren Schritten durch.

Kenntnisse

- o Bauordnungsrecht: Abstandsflächen, baulicher Brandschutz
- o Hochbauentwurf: Maßsysteme im Hochbau, Planungsraster, Gebäudetypologien
- o Primärkonstruktion: konstruktive Struktur und Standsicherheit
- o Sekundärkonstruktionen: Boden, Decke, nichttragende Wände
- o Fassadensysteme: Pfosten-Riegel-Fassaden
- o Dachkonstruktionen: Flachdach
- o erdberührende Bauteile und Abdichtungen
- o konstruktive Details

Fertigkeiten

- o Anwendung baurechtlicher Kenntnise im Entwurfsprozess
- o Berechnen baurechtlicher Daten
- o Entwickeln einer konstruktiven Struktur der Primärkonstruktion
- o Koordinieren der konstruktiven Struktur mit der Sekundärkonstruktion
- o Implementieren von konstruktiven Details und Fassadensystemen
- o Zusammenfassen und Darstellen der Ergebnisse

- o Beherrschung und strukturierte Bewältigung komplexer Planungsabläufe und Rückkopplungsprozesse in der Hochbauplanung.
- o Befähigung zu kritischer Beurteilung eigener Zwischenergebnisse und selbständiger Optimierung der Ergebnisse.
- o Erwerb fachspezifischer, methodischer, persönlicher und sozialer Kompetenzen

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Das Modul Baukonstruktion II und Entwurf ist Kernbereichsfach der Studienrichtungen Bau und Umwelt.

Zugangs- bzw. empfohlene Voraussetzungen

Baukonstruktion I, Bauleitplanung I

Inhalt

- o Bauordnungsrecht: Abstandsflächen, baulicher Brandschutz
- o Hochbauentwurf: Maßsysteme im Hochbau, Planungsraster, Gebäudetypologien
- o Primärkonstruktion: konstruktive Struktur und Standsicherheit
- o Sekundärkonstruktionen: Boden, Decke, nichttragende Wände
- o Fassadensysteme: Pfosten-Riegel-Fassaden
- o Dachkonstruktionen: Flachdach
- o erdberührende Bauteile und Abdichtungen
- o konstruktive Details

Lehr- und Lernmethoden

Seminaristischer Unterricht mit Übungen und Projektarbeit

Empfohlene Literaturliste

Eisele, Staniek (Hrsg.): Bürobau Atlas, 2005; Callwey Verlag, München; ISBN 3-7667-1649-2

Leicher: Tragwerkslehre in Beispielen und Zeichnungen; 2002, Werner Verlag, ISBN 3-8041-4749-6

OMBU-02 FEM: GRUNDLAGEN UND ANWENDUNGEN DER METHODE DER FINITEN ELEMENTE

Modul Nr.	MBU-02
Modulverantwortliche/r	Prof. Dr. Parviz Sadegh-Azar
Kursnummer und Kursname	FEM: Grundlagen und Anwendungen der Methode der Finiten Elemente Course
Lehrende	Daniel Dlubal
	Prof. Dr. Parviz Sadegh-Azar
Semester	Sommer
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	Portfolio
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Bei der Finite-Elemente-Methode (FEM) werden kleine Bereiche eines Bauteils oder eines Berechnungsgebietes dazu genutzt, um das physikalische Verhalten des Bauteils abzubilden, um dadurch einen Körper und dessen Verhalten, z. B. unter Einwirkung von Kräften, Wärme oder Schwingungen, berechenbar zu machen.

Kenntnisse

- o Die theoretischen Grundlagen in der Finite Elemente Methode
- o Durchführung einfacher FEM-Berechnungen
- o Fachspezifische Anwendung von FE-Berechnungen und seine Grenzen

Fertigkeiten

- o Lösung von linearen Gleichungssystemen
- o Anwendung von Interpolationspolynome
- o Theoretische Grundlagen von Eigenwertprobleme

- o Ermittlung von Lastvektoren, Deformationsvektoren
- o Erstellung von Steifigkeitsmatrizen für ein einfache Finite-Element-Modelle
- o Festlegung und Ermittlung der Eingangsgrößen für die Aufstellung der Gleichungssysteme Lösung für die unbekannten Größen (Freiheitsgrade)
- o Ansatzfunktionen für unbekannte Verschiebungen und Rotationen eines statischen Systems
- o Auswahl geeigneter Finite Elemente Elemente
- o Erstellung sinnvoller FE-Netze
- o realitätsnahe Definition von Lagerungs- und Lastbedingungen und kritische Beurteilung der Ergebnisse
- o Grenzen des Einsatzes der FEM zur Berechnung strukturmechanischer Bauteile
- o Feststellung von Fehlern beim Aufbau von FE-Modellen und Hinterfragung von Berechnungsergebnissen

o Selbstständiges Entwerfen, Planen und Berechnen einfacher FE-Modelle in der Theorie und Praxis und kritische Beurteilung der Ergebnisse.

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Das Modul Grundlagen und Anwendungen der Methode der Finiten Elemente ist Kernbereichsfach der Studienrichtungen Bau und Umwelt.

Zugangs- bzw. empfohlene Voraussetzungen

Lineare Algebra, Technische Mechanik, Geotechnik.

Inhalt

- o Matrizenalgebra
- o Lineare Gleichungssysteme
- o Lösungsverfahren für lineare Gleichungssysteme
- o Interpolation
- o Numerische Integration

- o Numerische Differentiation
- o Eigenwerte und Eigenvektoren
- o Einführung in die Finiten Verfahren
 - o 2D Fachwerk, Grundlagen
 - o 2D Fachwerk Element
 - o Balkenelement
- o FE-Technik
 - o Fehlerquellen
 - o Künstliche Singularität
 - o Nichtlineare Berechnungen
 - o Unterzüge in Platten
 - o 3D Modellierung
 - o Elastische Bettung von Bodenplatten
- o Anwendungen in der Geotechnik

Lehr- und Lernmethoden

Seminaristischer Unterricht

Empfohlene Literaturliste

Numerik:

Robert Plato; Numerische Mathematik kompakt, Vieweg Verlag, 2010

Thomas Richter, Thomas Wick; Einführung in die Numerische Mathematik, Springer; 2017

Dietlinde Lau; Algebra und Diskrete Mathematik 1, Springer, 2011

FEM:

Horst Werkle; Finite Elemente in der Baustatik, Vieweg Verlag, 2008

Lutz Nasdala; FEM-Formelsammlung Statik und Dynamik, Springer Verlag, 2010

Barth, Rustler; Finite Elemente in der Baustatik-Praxis

Bernd Klein; FEM, Springer Verlag 2015

Bathe, K.-J.: Finite-Elemente-Methoden, Springer 2002

Steinke, F.: Finite-Elemente-Methode, Springer 2012

OMBU-03 PROJEKTMANAGEMENT FÜR BAU- UND UMWELTINGENIEURE

Modul Nr.	MBU-03
Modulverantwortliche/r	Prof. Dr. Gerd Maurer
Kursnummer und Kursname	Projektmanagement für Bau- und Umweltingenieure
Semester	Sommer
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	Portfolio
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

In diesem Modul werden den Studierenden grundlegene und spezielle Techniken des Projektmanagements von Bauprojekten sowie die Wahrnehmung von Bauherrenaufgaben und Projektleitung vermittelt.

Kenntnisse

- o Kenntnisse über wichtige Methoden der Bau-Projektsteuerung
- o Anwendung und Analayse der Methoden und Techniken der Bau-Projektsteuerung
- o Bewertung der Ergebnisse

Fertigkeiten

- o Überwachung von Kosten und Terminen
- o Überwachung der Qualitäten und Quantitäten
- o Beschaffung von Material und Nachunternehmerleistungen
- o Aufstellen und Prüfung von Nachträgen
- o Projektentwicklung

o Selbständige, verantwortungsvolle, kreative und wirtschaftliche Abwicklung von Projekten

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Das Modul Projektmanagement ist Kernbereichsfach der Studienrichtungen Bau und Umwelt.

Zugangs- bzw. empfohlene Voraussetzungen

keine

Inhalt

- o Projektsteuerung: Aufgaben der Projektsteuerung in der Planungsphase, Ausschreibung und Vergabe, Kosten- und Terminplanung, Arbeitsmittel und Koordination, Öffentlichkeitsarbeit, Probleme im Bauablauf, Projektdokumentation, Verantwortlichkeiten (RACI-Matrix)
- o Einkauf: Beschaffung von Material und Nachunternehmerleistungen.
- o Nachtragsmanagement: Vergütung von "Gestörten Bauabläufen", IT-Workshop Terminplanung und Kostenplanung: Fortschreibung von gestörten Bauabläufen, außergerichtliche Einigungsverfahren.
- Projektentwicklung: Handlungsfelder, Beschaffung der Projektidee, Finanzierungsarten, Wirschaftlichkeitsszenarien, Miet- und Verwaltungsmanagement, Vertragswesen, Wertermittlung, Due Diligence-Untersuchungen.
- o Selbständige Erarbeitung eines Projekthandbuchs für ein Bauprojekt als Gruppenaufgabe

Lehr- und Lernmethoden

seminaristischer Unterricht, Übungen, selbstständige Gruppenarbeiten zu Themenfeldern unter Bezugnahme auf Praxisprojekte

Empfohlene Literaturliste

Vorlesungsmanuskript

Greiner/Mayer/Stark: Baubetriebslehre - Projektmanagement, 3. Auflage, vieweg Verlag, 2005

Wirth/Bührle/Schulze-Seeger - Erfolgsfaktor Nachtragsmanagement, expert verlag, 2000

Kyrein - Immobilien: Projektmanagement, Projektentwicklung und -steuerung, 2002

Sommer, Hans: Projektmanagement im Hochbau

AHO Heft Nr. 9: Leistungsbild Projektmanagement,

OMBU-04 MATHEMATIK III

Modul Nr.	MBU-04
Modulverantwortliche/r	Prof. Dr. Peter Ullrich
Kursnummer und Kursname	Mathematik III
Lehrende	Prof. Dr. Peter Ullrich
Semester	Sommer
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die mathematischen und statistischen Kenntnisse aus dem Bachelorstudium werden vertieft, ergänzt und erweitert.

Kenntnisse

Die Studierenden sollen fundierte Kenntnisse der wichtigsten Methoden aus der Statistik, Datenanalyse und der numerischen Mathematik, sowie Grundkenntnisse über Laplace-Transformationen im Hinblick auf Anwendungen in der Regelungstechnik erwerben.

Fähigkeiten

Die Studierenden sollen die erworbenen Kenntnisse sicher auf Fragestellungen anwenden, statistische Datenauswertungen eigenständig erstellen und numerische Methoden bei ingenieurtechnischen Problemstellungen vorteilhaft einsetzen können.

Kompetenzen

Die Studierenden sollen aufgrund ihres Wissens und ihrer erworbenen Fähigkeiten eine interdisziplinäre Schnittstellenkompetenz erlangen, die sie befähigt, eigenständig Methoden aus unterschiedlichen Gebieten der angewandten Mathematik vorteilhaft auf technische Problemstellungen in der Praxis anzuwenden.

Verwendbarkeit in diesem und in anderen Studiengängen

Messen-Steuern-Regeln (MBU-16)

Grundlagen und Anwendungen der Methode der Finiten Elemente (MBU-9)

Das Modul Mathematik III ist Kernbereichsfach der Studienrichtungen Bau und Umwelt.

Zugangs- bzw. empfohlene Voraussetzungen

Mathematik I, Mathematik II

Inhalt

- o Analysis und numerische Mathematik
- o Polynome
- o Polynominterpolation
- o Laplace-Transformation
- o Wahrscheinlichkeitstheorie
- o Deskriptive Statistik
- o Induktive Statistik
- o Datenanalyse
- o Programmierung

Lehr- und Lernmethoden

seminaristischer Unterricht mit Übungen und Computereinsatz

Empfohlene Literaturliste

Papula L.: Mathematik für Ingenieure und Naturwissenschaftler, Band 2, 14., überarb. und erw. Auflage, Springer Vieweg, Berlin, 2015

Papula L.: Mathematik für Ingenieure und Naturwissenschaftler, Band 3, 7. Auflage, Springer Vieweg, Berlin, 2016

Freund W.F., Hoppe R.H.W.: Stoer/Bulirsch: Numerische Mathematik 1, 10. neu bearb. Auflage, Springer Verlag, Berlin, 2007

Stoer J., Bulirsch R.: Numerische Mathematik 2, 5. Auflage, Springer Verlag, Berlin, 2005

Schwarz H.R., Köckler N.: Numerische Mathematik, 8. aktualis. Auflage, Vieweg+Teubner, Wiesbaden, 2011

Hanke-Bourgeois M.: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, 3. aktualis. Auflage, Vieweg+Teubner Verlag, 2009

Rjasanova K.: Mathematische Modelle im Bauingenieurwesen, 2., aktualis. Auflage, Hanser Verlag, 2015

Bungartz H.-J. et al: Modellbildung und Simulation, 2., überarb. Auflage, Springer Verlag, Berlin, 2013

Quarteroni A.: Numerical Methods for Differential Problems, 3rd ed., Springer Verlag, Berlin, 2017

Press W.H. et al: Numerical Recipes, 3rd ed., Cambridge University Press, New York, 2007

Hamming R.W.: Numerical Methods for Scientists and Engineers, 2nd ed., Dover Pub., New York, 1973

Lehn J., Wegmann H.: Einführung in die Statistik, 5. durchges. Auflage, Teubner, Wiesbaden, 2006

Sachs M.: Wahrscheinlichkeitsrechnung und Statistik, 6. aktualis. Auflage, Hanser, München, 2021

Siebertz K., van Bebber D., Hochkirchen T.: Statistische Versuchsplanung, 2. Auflage, Springer Vieweg, Berlin, 2017

Wollenschläger D.: Grundlagen der Datenanalyse mit R, 5. Auflage, Springer Vieweg, 2020

Navidi W.: Statistics for Engineers and Scientists, 4th ed., McGraw Hill, New York, 2014

Devore J.L.: Probability and Statistics for Engineering and the Sciences, 9th ed., Brooks/Cole Cengage Learning, Independence KY, 2016

Field A., Miles J., Field Z.: Discovering Statistics Using R, Sage Pub. Ltd., London, 2012

OMBU-05 AUSGEWÄHLTE KAPITEL DER WASSERWIRTSCHAFT

Modul Nr.	MBU-05
Modulverantwortliche/r	Prof. Dr. Wolfgang Rieger
Kursnummer und Kursname	Ausgewählte Kapitel der Wasserwirtschaft
Lehrende	Prof. Dr. Andrea Deininger
	Prof. Dr. Wolfgang Rieger
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	Portfolio
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch
	I control of the cont

Qualifikationsziele des Moduls

Die Studierenden können nach Absolvierung des Moduls komplexere Aufgaben aus der Wasserwirtschaft bearbeiten bzw. Fragestellungen dazu lösen, sind sicher in theoretischer Bemessung sowie Präsentationen und in Diskussionsrunden zu den genannten Themen.

Kenntnisse

- o Grundlagen des integrierten Hochwasserschutzes
- o Hydraulik und Hydrologie
- o Grundlagen des Trinkwassermanagements
- o Bemessungsgrundsätze von Hochwasserrückhaltebecken
- o theoretische Grundlagen und Bemessungsgrundsätze spezieller Verfahren in der Abwasserreinigung (Deammonifikation, SBR-Technologie, Entfernung anthropogener Spurenstoffe)

Fertigkeiten

- o Anwendung o.g. Kenntnisse und Lösen von speziellen Problemen im Hochwasserschutz, in der Abwasserentsorgung und in der Trinkwasserversorgung
- o Dimensionieren und Berechnen von Anlagen der Abwasserentsorgung, der Trinkwasserversorgung und des Hochwasserschutzes
- o Verstehen und Lösen von komplexen Fragestellungen der Abwasserentsorgung, der Trinkwasserversorgung und des Hochwasserschutzes
- o Durchführen von Planungen
- o Überprüfen ud Bewerten von bestehenden Anlagen
- o Ermitteln von Grundlagendaten

- o Selbständiges kreatives Bemessen und Dimensionieren von o.g. Anlagen
- o detaillierte Kenntnisse in den genannten ausgewählten Kapiteln
- o Befähigung zum sicheren Vorstellen und Präsentieren der erworbenen Kenntnisse
- o Beherrschen des Stoffes in fachlichen Diskussionen
- o Beurteilung und Bewertung von Fremdplanungen
- o eigenständiges Bearbeitung von komplexen Aufgabestellungen

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. beim Anfertigen der Masterarbeit

Das Modul "Ausgewählte Kapitel der Wasserwirtschaft" ist Kernbereichsfach der Studienrichtungen Bau und Umwelt.

Zugangs- bzw. empfohlene Voraussetzungen

Abwasserentsorgung, Wasserbau, Trinkwasserversorgung oder vergleichbare Lehrveranstaltungen

Inhalt

- o Integrierter Hochwasserschutz
- o Aufbau von Flussgebietsmodellen
- o Trinkwassermanagement
- o Planung und Bemessung von Hochwasserrückhaltebecken

- o Neue Technologien zur Stickstoffentfernung im Abwasser (Deammonifikation)
- o SBR-Technologie
- o Anthropogene Spurenstoffe im Abwasser
- o Membrantechnologie
- o Behandlung der Reststoffe (Klärschlämme), Verbleib / Redistribution in die Umwelt, Natural Attenuation
- o Beispiele
- o Vortrag durch Studierende
- o Exkursion

Lehr- und Lernmethoden

seminaristischer Unterricht mit Berechnungsbespielen, Vorträge durch Studenten

Besonderes

Mündliche Prüfung als Teil der PStA, zählt 40% und muss zum Bestehen des Gesamtmoduls bestanden sein.

Empfohlene Literaturliste

ATV-DVWK-Regelwerk, Arbeitsblatt A 281(2001), Bemessung von Tropfkörpern und Rotationstauchkörpern

ATV-DVWK-Regelwerk, Arbeitsblatt A 131 (2016), Bemessung von einstufigen Belebungsanlagen

Günthert, F.W. Kommunale Kläranlagen: Bemessung, Erweiterung, Betriebsoptimierung und Kosten, expert Verlag, 2008.

Bever, Stein, Teichmann, 2002, Weitergehende Abwasserreinigung, Oldenbourg Industrieverlag, München.

Imhoff , K. und K., 2007, Taschenbuch der Stadtentwässerung, Oldenbourg Industrieverlag, München.

DVGW Regelwerk Wasser 2015

Karger, Hoffmann, Wasserversorgung: Gewinnung - Aufbereitung - Speicherung - Verteilung, Springer-Vieweg 2013

Grambow, Nachhaltige Wasserbewirtschaftung: Konzept und Umsetzung eines vernünftigen Umgangs mit dem Gemeingut Wasser, Springer-Vieweg 2012

Hüttl, Georessource Wasser: Herausforderung Globaler Wandel, Springer-Vieweg 2012

DWA Regelwerk Wasserbau und Wasserwirtschaft 2015-04-23

DIN19700 Teile 10 bis 15 Stauanlagen

Heimerl, Meyer, Vorsorgender und nachsorgender Hochwasserschutz - Ausgewählte Beiträge aus der Fachzeitschrift WasserWirtschaft, Springer-Vieweg 2012

OMBU-06 BRÜCKENBAU

	T
Modul Nr.	MBU-06
Modulverantwortliche/r	Prof. Dr. Roland Friedl
Kursnummer und Kursname	Brückenbau
Lehrende	Prof. Dr. Roland Friedl
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Kern- / Wahlpflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 30 Stunden
	Selbststudium: 90 Stunden
	Virtueller Anteil: 30 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	mdl. P. 15 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Den Studierenden werden die notwendigen Grundlagen für den Entwurf und die Berechnung von neuen Straßen-, Fußgänger- und Eisenbahnbrücken vermittelt. Neben den Entwurfsgrundsätzen werden die heute zu berücksichtigenden Einwirkungen sowie das Tragverhalten in Abhängigkeit des gewählten Längs- und Quertragsystems erläutert.

Den vielfach bemessungsmaßgebenden Bauverfahren und Bauzuständen wird eine besondere Bedeutung beigemessen.

Im Zuge der Betrachtung der historischen Entwicklung des Brückenbaus werden die bei der Bewertung bestehender Brückenbauwerke zu bewältigenden Herausforderungen näher behandelt (Koppelfugenproblematik, Spannungsrisskorrosionsgefährdeter Spannstahl, Ermüdung bestehender Stahlbrücken, Korrosion des Beton- und des Spannstahles, etc).

Kenntnisse:

- Historische Entwicklung
- o Einwirkungen und Lastannahmen
- o Längstragsysteme
- o Quertragsysteme

- o Bauverfahren und Montage
- o Lagerungskonzepte
- o vertiefte Kenntnisse zur Sicherheitsphilosophie
- o Zwangschnittgrößen
- o Schnittgrößenumlagerungen auf Querschnitts- und Systemebene
- o Ermüdung

Fertigkeiten:

- o Verstehen der Zusammenhänge
- o Anwenden von Berechnungsverfahren und Berechnungshilfsmitteln
- o Bearbeitung von Entwurfsaufgaben im Brückenbau
- o Führen von Nachweisen in den Grenzzuständen der Gebrauchstauglichkeit und der Tragfähigkeit
- o Durchführung von Berechnungen für spezielle Aufgabenstellungen
- o kritische Analyse der Ergebnisse

Kompetenzen:

- o Entwerfen, Konstruieren und Bemessen von Massiv-, Verbund- und Stahlbrücken
- o Beurteilung des Tragverhaltens von Brücken
- o Bewerten der Standsicherheit von (bestehenden) Brücken

Verwendbarkeit in diesem und in anderen Studiengängen

Grundlage und Ergänzung der Lehrinhalte sämtlicher konstruktiver Fächer

u.U. zur Anfertigung der Masterarbeit

Das Modul Brückenbau ist Kernbereichsfach der Studienrichtung Bau.

Zugangs- bzw. empfohlene Voraussetzungen

Technische Mechanik, Werkstoffe im Bauwesen, Massivbau I u. II, Stahlbau I und II, Holzbau I

Inhalt

- o Sicherheitsphilosophie im Bauwesen
- o Entwerfen, Konstruieren, Berechnen und Bewerten von Massiv-, Verbund- und Stahlbrücken
- o Bauverfahren und Montage
- o Zwangbeanspruchung, Schnittgrößenumlagerung und Ermüdung
- o Bewertung der Standsicherheit sowie der Ermüdungssicherheit

Die Prüfung wird als mündliche Prüfung mit 15 Minuten Dauer durchgeführt. Vor der mündlichen Prüfung findet eine 15-minütige Vorbereitung statt, in der die Studierenden eine Aufgabe bearbeiten, über die sie anschließend in der mündlichen Prüfung referieren.

Lehr- und Lernmethoden

seminarischer Unterricht, Übungen

Empfohlene Literaturliste

Bücher:

Leonhardt, F.: Vorlesungen über Massivbau, Teil 6, Grundlagen des Massivbrückenbaus Springer-Verlag

Holst, K.-J.: Brücken aus Stahlbeton und Spannbeton, Ernst & Sohn

Homberg, H..: Berechnung von Brücken unter Militärlasten, Werner-Verlag

Petersen, Ch.: Stahlbau, Vieweg-Verlag

Petersen, Ch.: Statik und Stabilität der Baukonstruktion, Vieweg-Verlag

Zeitschriften:

Beton- und Stahlbetonbau, Verlag Ernst & Sohn

Bauingenieur, Springer-Verlag

Bautechnik, Verlag Ernst & Sohn

Stahlbau, Verlag Ernst & Sohn

Schriftenreihen:

Betonkalender, Teile 1 und 2, Verlag Ernst & Sohn (erscheint jährlich mit wechselnden Beiträgen)

Stahlbau Kalender, Verlag Ernst & Sohn

OMBU-07 METALLBAU II

Modul Nr.	MBU-07
Modulverantwortliche/r	Prof. Dr. Florian Neuner
Kursnummer und Kursname	Metallbau II
Lehrende	Prof. Dr. Florian Neuner
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Kern- / Wahlpflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 80 Stunden
	Virtueller Anteil: 10 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Durch das Modul Metallbau II werden die Kenntnisse und Inhalte des Bachelor-Moduls Metallbau I ergänzt, vertieft und erweitert.

Kenntnisse

- o Theorie der Wölbkrafttorsion,
- o Grundlagen der Werkstoffermüdung, Nachweise der Betriebsfestigkeit,
- o Anwendungen der Plastizitätstheorie,
- o Bemessung von Stahl-Beton-Verbundkonstruktionen,
- o Vertiefte Kenntnisse der Stabilitätstheorie

Fertigkeiten

- o Konstruktion und Bemessung auch schwierigerer Tragwerke aus Stahl
- o Konstruktion und Bemessung einfacher Tragwerke des Verbund- und Leichtmetallbaus

- o verantwortungsvolle und selbstständige Bearbeitung auch schwieriger Aufgabenstellungen des Stahlbaus
- o Übertragung der erlernten Methoden der Nachweisführung auf für sie neue Problemstellungen

Verwendbarkeit in diesem und in anderen Studiengängen

Masterarbeit

Das Modul Metallbau II ist Kernbereichsfach der Studienrichtung Bau.

Zugangs- bzw. empfohlene Voraussetzungen

Metallbau I, Baustatik III

Inhalt

- o Stabilität/Theorie II. Ordnung Vertiefung
- o Ermüdung und Betriebsfestigkeit Einführung
- o Plastizitätstheorie Vertiefung
- o Wölbkrafttorsion Vertiefung
- o Stahl-Beton-Verbundbau Vertiefung

Lehr- und Lernmethoden

Seminaristischer Unterricht mit mindestens einer selbstständigen Übungseinheit je Doppelstunde

Empfohlene Literaturliste

Neuner, F.: Umdrucke zur Vorlesung Metallbau II (laufend aktualisiert)

Petersen, C.: Stahlbau , Springer (2020).

Stahlbau-Kalender, Ernst und Sohn (laufende Jahrgänge)

OMBU-08 HOLZBAU II

Modul Nr.	MBU-08
Modulverantwortliche/r	Prof. Dr. Kai Haase
Kursnummer und Kursname	Holzbau II
Lehrende	Prof. Dr. Kai Haase
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Kern- / Wahlpflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

In diesem Modul werden die Inhalte und Kenntnisse aus dem Bachelor-Modul Holzbau I weiter vertieft und erweitert, mit dem Ziel, die Studierenden zu befähigen, anspruchsvolle Holzbaukonstruktionen selbstständig zu entwerfen, zu konstruieren und zu bemessen.

Kenntnisse

- o Sparrenpfetten unterschiedlicher Durchbildung
- Besonderheiten nicht-parallelgurtiger Brettschichtholzträger
- o Rahmen und -ecken
- o Aussteifungsverbände
- o Verstärkungsmaßnahmen, Brandschutz
- o Zusammengesetzte, nachgiebig verbundene Querschnitte
- o Nachweisverfahren bei Platten aus Brettsperrholz
- o Gamma-Verfahren vs. Schubanalogieverfahren

Fertigkeiten

- o Hallen aus Holz konstruieren und bemessen
- o Zusammengesetzte, nachgiebig verbundene Bauteile nachweisen

Kompetenzen

- o Befähigung zum verantwortungsvollen und selbstständigen Entwerfen, Konstruieren und Bemessen von anspruchsvollen Konstruktionen des Ingenieurholzbaus
- o Befähigung zur Bemessung von zusammengesetzten, nachgiebig verbundenen Bauteilen

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Das Modul Holzbau II ist Kernbereichsfach der Studienrichtung Bau.

Zugangs- bzw. empfohlene Voraussetzungen

Technische Mechanik

Baustatik I bis III (Schnittgrößen statisch bestimmter und unbestimmter Systeme, Festigkeitslehre)

Holzbau I (mind. 4 SWS)

Inhalt

Die Vorlesungen erfolgen zurzeit auf der Grundlage des Eurocode 5:

- o Bemessung und Ausführung von Sparrenpfetten unterschiedlicher Durchbildung
- o Bemessung nicht-parallelgurtiger Brettschichtholzträger
- o Konstruktion und Bemessung von Rahmen und -ecken
- o Bemessung und Ausführung von Aussteifungsverbänden
- o Verstärkungsmaßnahmen, Brandschutz
- o Nachweisverfahren bei zusammengesetzten, nachgiebig verbundenen Querschnitten
- o Nachweisverfahren bei Platten aus Brettsperrholz
- o Gamma-Verfahren vs. Schubanalogieverfahren

Lehr- und Lernmethoden

seminaristischer Unterricht

Empfohlene Literaturliste

Vorlesungsumdruck

Colling: Holzbau, Vieweg-Verlag

Neuhaus: Ingenieurholzbau, Vieweg+Teubner Verlag

DIN EN 1995-1-1:2014, Beuth-Verlag

DIN EN 1995-1-1/NA:2013, Beuth-Verlag

OMBU-09 GEOTECHNIK II

Modul Nr.	MBU-09
Modulverantwortliche/r	Prof. Dr. Parviz Sadegh-Azar
Kursnummer und Kursname	Geotechnik II
Lehrende	Prof. Dr. Parviz Sadegh-Azar
Semester	Sommer
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Kern- / Wahlpflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 120 Min.
Dauer der Modulprüfung	120 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

In diesem Modul werden die Inhalte aus dem Bachelor-Modul Geotechnik I vertieft und erweitert. Die Studierenden werden befähigt, Lösungen für komplexe geotechnische Bauaufgaben selbstständig zu erarbeiten und die technische und wirtschaftliche Eignung eines geotechnischen Entwurfs zu beurteilen.

Kenntnisse

- o Vertiefung der geotechnischen Kenntnisse aus dem Bachelorstudium
- o Wechselwirkungen von Bau- und Berechnungsverfahren im Grund- und Spezialtiefbau
- o Eigenschaften von weichen bindigen Böden und geeignete Verfahren zur Bodenverbesserung
- o Maßnahmen zur Baugrundverbesserung und Wasserhaltung (Vertiefung)

Fertigkeiten

o Nachweis von Baugrubenumschließungen (Schlitzwände, Spundwände und Trägerbohlwände)

- o Ausfühung und Bemessung von Verankerungen
- o Planung und Berechnung von Grundwasserhalterung
- o Baugruben im Grundwasser
- o Baugrundverbesserungsmaßnahamen
- o Scherfestigkeit (Vertiefung)
- o Injektionstechniken und Kontrolle
- o Anwendung von Geokunstoffen in der Geotechnik
- o Problemangepasster Einsatz geotechnischer Software
- o Projektbeispiele

- o Erarbeitung von Lösungen für komplexe geotechnische Bauaufgaben
- o Beurteilung der technischen und wirtschaftlichen Eignung eines geotechnischen Entwurfs

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Das Modul Geotechnik II ist Kernbereichsfach der Studienrichtung Bau.

Zugangs- bzw. empfohlene Voraussetzungen

Geotechnik I

Inhalt

- o Nachweis von Baugrubenumschließungen (Schlitzwände, Spundwände und Trägerbohlwände)
- o Ausfühung und Bemessung von Verankerungen
- o Planung und Berechnung von Grundwasserhalterung
- o Baugruben im Grundwasser
- o Baugrundverbesserungsmaßnahamen
- o Scherfestigkeit (Vertiefung)

- o Injektionstechniken und Kontrolle
- o Anwendung von Geokunstoffen in der Geotechnik
- o Problemangepasster Einsatz geotechnischer Software
- o Projektbeispiele

Lehr- und Lernmethoden

seminaristischer Unterricht mit Übungen und Computereinsatz

Empfohlene Literaturliste

Kolymbas, D.: Geotechnik - Bodenmechanik, Grundbau und Tunnelbau; 5. Auflage; Springer; 2019

Schmitt et al.: Simmer Grundbau 1: Bodenmechanik und erdstatisch Berechnungen; 20. Auflage; Springer; 2021

Kuntsche, K; Richter, S.: Geotechnik: Erkunden - Untersuchen - Berechnen - Ausführen - Messen; 3. Auflage; 2021

Lang et al.: Bodenmechanik und Grundbau; 9. Auflage; Springer; 2011

Ziegler, M.: Geotechnische Nachweise nach EC 7 und DIN 1054; 3. Auflage; Ernst & Sohn; 2012

Witt, K.; Grundbau-Taschenbuch; Teil 1: Geotechnische Grundlagen; 8., Auflage; 2017; Teil 2: Geotechnische Verfahren; 8. Auflage; 2018; Teil 3: Gründungen und geotechnische Bauwerke; 8. Auflage; 2018

Eurocodes, DIN-Normen sowie EA-Pfähle, EA-Baugrubenumschließungen, EA- Numerik in der Geotechnik sowie EA-Baugrunddynamik in der aktuellen Fassung

OMBU-10 BAUSANIERUNG UND BRANDSCHUTZ

Modul Nr.	MBU-10
Modulverantwortliche/r	Prof. Dr. Sophia Kueres
Kursnummer und Kursname	Bausanierung und Brandschutz
Lehrende	Prof. Dr. Sophia Kueres
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Kern- / Wahlpflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	Portfolio
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Mit zunehmender Bedeutung von Gebäuden als Investitionsobjekt wächst die Bedeutung von lebensdauerrelevanten Fragestellungen von Baustoffen und Bauteilen:

Kenntnisse

Die Studierenden kennen Ursachen von Bauschäden und Brandschäden, um in der Planung von Gebäuden bereits vorbeugend wirken zu können. Sie kennen die Vorschriften, Gesetze und Normen sowie die physikalischen und chemischen Grundlagen der Brandlehre.

Fertigkeiten

Die Studierenden können Schäden an Gebäuden bewerten und sind in der Lage, Sanierungsmethoden zu entwickeln und Materialuntersuchungen einzubinden.

Kompetenzen

Sie können selbständig und verantwortungsvoll eine Brandschutzplanung und Umplanung durchführen. Sie können kreativ die erworbenen Fertigkeiten umsetzen.

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Das Modul "Bausanierung und Brandschutz" ist ein Kernbereichsfach der Studienrichtung Bau.

Zugangs- bzw. empfohlene Voraussetzungen

keine

Inhalt

Bausanierung:

- o Lebensdauerzyklus Gebäude; Nachhaltigkeit, Planbarkeit der Nutzungskosten
- o Grundlagen des Instandhaltungsmanagements an Beispielen: als Ziel die jährlichen Instandhaltungsaufwendungen auf gleichbleibenden Niveau zu halten, Frühwarnsysteme
- Entscheidungshilfe bei der Bauteilauswahl in der Planungsphase von Neubau- aber auch Umbau- oder Instandsetzungsprojekten und zur Budgetierungs- und Instandhaltungsplanung.
- o Arten des Bauens im Bestand: Instandsetzung, Renovierung, Modernisierung, Umbau; Unterscheidung, Beispiele
- o Besonderheiten bei denkmalgeschützten Bauten
- o Grundlagen der Dauerhaftigkeit von Baustoffen und Bauteilen, Lebensdauer und Ausfallverhalten
- o Einflussfaktoren auf die Lebensdauer von Bauteilen
- o Schadensursachen, Schadensarten und Häufigkeit
- o Schäden an Stahlbeton, Mauerwerk, Holz, Stahl und Ausbauwerkstoffe.

Schwerpunkt ist die Bearbeitung eines Praktischen Projektes. Sanierungskonzepte an gruppenweise durchgeführten Projekten zur Schadenserhebung

Brandschutz:

- o Brandlehre (Verbrennungsprozesse Brandverlauf)
- o Brandgefahren und Brandrisiken
- o Einwirkung von Feuer auf Baustoffe und Bauteile
- o Brandschutzmaßnahmen, Brandschutzkonzepte

Schwerpunkt ist die Bearbeitung eines Brandschutzkonzeptes für ein Gebäude

Lehr- und Lernmethoden

seminaristischer Unterricht, Projektarbeit

Empfohlene Literaturliste

vfdb Technischer Bericht - Leitfaden Ingenieurmethoden des Brandschutzes, herausgegeben von Jochen Zehfuß; 4. Auflage, März 2020

diverse aktuelle Vorschriften und gesetzliche Vorgaben zum Thema Brandschutz und Bausanierung

aktuelles Skript aus der Lehrveranstaltung

○MBU-11 GRUNDLAGEN DER BAUDYNAMIK

Modul Nr.	MBU-11
Modulverantwortliche/r	Prof. Dr. Florian Neuner
Kursnummer und Kursname	Grundlagen der Baudynamik
Lehrende	Prof. Dr. Florian Neuner
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Kern- / Wahlpflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 80 Stunden
	Virtueller Anteil: 10 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/90
	Deutsch
Unterrichts-/Lehrsprache	Deutsch
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Das Ziel dieser Vorlesung ist es, die Grundlagen der Schwingungstheorie und deren Anwendung auf einfache baupraktische Fälle zu vermitteln.

Kenntnisse

- o Ungedämpfte und linear gedämpfte Schwingung des einfachen Massenpunktes
- o Schwingungen von Systemen mit mehreren Freiheitsgraden
- o Zeitschrittverfahren
- o Modale Analyse
- o Grundlagen der Behandlung praktischer Problemstellungen aus den Bereichen: Erdbeben, Maschinenfundamente, winderregte Schwingungen

Fertigkeiten

- o Fundiertes Grundlagenwissen in der Baudynamik
- o Verstehen der Begriffe der Baudynamik

- o Anwenden von Berechnungsmethoden der Baudynamik
- o Analyse der Ergebnisse

Die Studierenden sind befähigt, elementare Aufgabenstellungen der Baudynamik eigenverantwortlich zu bearbeiten.

Verwendbarkeit in diesem und in anderen Studiengängen

Grundlage und Ergänzung der Lehrinhalte sämtlicher konstruktiver Fächer

u.U. zur Anfertigung der Masterarbeit

Das Modul "Grundlagen der Baudynamik" ist ein Kernbereichsfach der Studienrichtung Bau.

Zugangs- bzw. empfohlene Voraussetzungen

Grundlagen der Technischen Mechanik, Baustatik III

Inhalt

- 1. Einführung
- 2. Schwingungen des Massenpunktes
 - 2.1 Grundlagen
 - 2.2 Freie ungedämpfte Schwingungen
 - 2.3 Freie gedämpfte Schwingungen
 - 2.4 Erzwungene Schwingungen
 - 2.5 Zeitschrittverfahren
- 3. Schwingungen von Systemen mit mehreren Freiheitsgraden
 - 3.1 Freie, ungedämpfte Schwingungen des Zweimassenschwingers
 - 3.2 Einführung in die modale Analyse (Eigenformmethode)
- 4. Zeitschrittverfahren Nichtlineare Systeme
- 5. Einführung in ausgewählte praktische Problemstellungen
 - 5.1 Maschinenfundamente

- 5.2 Winderregte Schwingungen
- 5.3 Erdbebenerregte Schwingungen

Lehr- und Lernmethoden

Seminaristischer Unterricht mit mindestens einer selbstständigen Übungseinheit je Doppelstunde

Empfohlene Literaturliste

Neuner, F.: Grundlagen der Baudynamik, Skriptum zur Vorlesung (laufend aktualisiert)

Gross; Hauger; Schröder; Wall: Technische Mechanik 3: Kinetik. Springer (2006)

Clough; Penzien: Dynamics of Structures. McGraw-Hill (1975)

Petersen/Werkle: Dynamik der Baukonstruktionen. Vieweg (2018)

OMBU-12 VERKEHRSWEGEBAU II

Modul Nr.	MBU-12
Modulverantwortliche/r	Prof. Dr. Bernhard Bösl
Kursnummer und Kursname	Verkehrswegebau II
Lehrende	Prof. Dr. Bernhard Bösl
Semester	Sommer
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Kern- / Wahlpflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden vertiefen und erweitern in diesem Modul ihre Kenntnisse und Fertigkeiten in der Planung, der Konstruktion, der Instandsetzung und Sanierung der Verkehrsinfrastraktur (Straßen- und Schienenverkehr).

Kenntnisse

- o Straßenbau: Oberbau von Straßenverkehrsanlagen, Qualität von Knotenpunkten
- o Bahnbau: Oberbau und Eisenbahnsicherungswesen

Fertigkeiten

Die Studierenden sollen

- o den Oberbau von Straßenverkehrsanlagen auch außerhalb von Standardsituationen dimensionieren können,
- o Lösungskonzepte vorschlagen können und die Qualität einfacher Knotenpunkte nachweisen können und

o den Oberbau von Schienenverkehrsanlagen festlegen und dimensionieren können und Sicherungsanlagen des Eisenbahnverkehrs verstehen und in einfachen Fällen entwickeln können.

Kompetenzen

Die Studierenden sollen,

- o beim Entwurf und Betrieb von Straßenverkehrsanlagen kreativ mitarbeiten können, Planinhalte und Dimensionierungsfragen mit Fachleuten erörtern können und bei Zielkonflikten Lösungsmöglichkeiten entwickeln können und
- o bei Schienenverkehrsanlagen am Entwurf und Betrieb kreativ mitarbeiten können und im interdisziplinären Fachkontext Planungsziele und Lösungsmöglichkeiten gemeinsam entwickeln können.

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Das Modul Verkehrswegebau II ist Kernbereichsfach der Studienrichtung Bau.

Zugangs- bzw. empfohlene Voraussetzungen

Verkehrswegebau I

Inhalt

Straßenbau:

- o Oberbau: standardisierte Verfahren und klassische Berechnungsverfahren
- o Qualität von Knotenpunkten
- o Straßenausstattung

Bahnbau:

- o Berechnung des Oberbaus
- o Bahnanlagen
- o Eisenbahnsicherungswesen

Lehr- und Lernmethoden

Seminaristischer Unterricht mit Übungen

Empfohlene Literaturliste

Mentlein H., Lorenzl H., Straßenbau - Straßenbautechnik, Reguvis Fachmedien GmbH, Köln

Eisenmann J., Leykauf G., Betonfahrbahnen, Verlag Ernst & Sohn (Wiley & Sons)

Matthews V.: Bahnbau, Vieweg + Teubner Verlag

Jochim H., Lademann F., Planung von Bahnanlagen, Hanser Fachbuchverlag

OMBU-13 BAULEITPLANUNG II UND VERKEHRSPLANUNG

Modul Nr.	MBU-13
Modulverantwortliche/r	Prof. Konrad Deffner
Kursnummer und Kursname	Bauleitplanung II und Verkehrsplanung
Lehrende	Prof. Konrad Deffner
	Prof. Dr. Bernhard Bösl
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Kern- / Wahlpflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	Portfolio
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch
L	I.

Qualifikationsziele des Moduls

Die Studierenden erwerben vertiefte Kenntnisse im Planungsprozess von städtebaulichen Entwicklungen.

Kenntnisse

- o Parameter, Prozesse und Abläufe bei der Planung und Steuerung städtischer Entwicklungen, die mit Hilfe eines konkreten Projekts aus der städtebaulichen Planung durchgespielt und erworben werden
- Aspekte der Nachhaltigkeit, der Verdichtung, der Stadtökologie sowie auf zukunftsweisende Verkehrsstrategien (auf Grundlage der Inhalte von Bauleitplanung I)

Fertigkeiten

- o strukturierte Bewältigung komplexer Planungsabläufe und Rückkopplungsprozesse in der Bauleitplanung und Verkehrsplanung
- o Entwicklung und Darstellung von Lösungskonzepten (selbständig und in Teamarbeit)

Kompetenzen

Die Studierenden sind befähigt,

- o kreativ in der Stadt- und Verkehrsplanung mitzuarbeiten.
- o durch die Komplexität der Planungsaufgaben in Teamarbeit Lösungen zu entwickeln und darzustellen.
- o erlernte fachliche, persönliche und soziale Kompetenzen im Fachgebiet anzuwenden.

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Das Modul Bauleitplanung II und Verkehrsplanung ist Kernbereichsfach der Studienrichtung Umwelt.

Zugangs- bzw. empfohlene Voraussetzungen

Bauleitplanung I

Inhalt

- o Bauplanungsrecht und Verfahren der Bauleitplanung
- o städtebaulicher Entwurf,
- o Wohnnutzung im städtebaulichen Kontext
- o nachhaltige Bodennutzung
- o Stadtökologie
- o urbane Dichte
- o Individualverkehr in Siedlungsgebieten
- o ÖPNV in Siedlungsgebieten
- o Ruhender Verkehr

Lehr- und Lernmethoden

Seminaristischer Unterricht mit Übungen

Empfohlene Literaturliste

projektbegleitende Unterlagen

Herzog (Hrsg.): Solar Energy in Architecture and Urban Planning; 1996, Prestel Verlag, München; ISBN 3-7913-1652-4

Gehl: Cities for People; 2010, Islandpress, Washington; ISBN 10: 1-59762-573-X

OMBU-14 NACHHALTIGES BAUEN II

Modul Nr.	MBU-14
Modulverantwortliche/r	Prof. Konrad Deffner
Kursnummer und Kursname	Nachhaltiges Bauen II
Lehrende	Prof. Josef Steretzeder
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Kern- / Wahlpflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	Portfolio
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden sollen grundlegende Kenntnisse und Fertigkeiten zu nachhaltigen Produkten, Gebäuden und Energiemanagementsystemen erlangen, um diese dann verantwortungsvoll in ihr zukünftiges Arbeitsumfeld zu implementieren und dadurch das Nachhaltige Bauen und die Kreislaufwirtschaft in der Praxis voranzutreiben.

Kenntnisse:

Die Studierenden sollen vertiefte Kenntnisse zu Gebäudezertifizierungssystemen, Umwelt- und Energiemanagementsystemen und über den "cradle to cradle"-Ansatz in der Kreislaufwirtschaft erlangen.

Fertigkeiten:

Anhand von praktischen Fallbeispielen sollen die Studierenden die Kenntnisse auf Bauprodukten und Gebäuden anwenden und entsprechende Produkt- und Systembewertungen umsetzen können. Sie sollen Fallbeispiele verstehen und analysieren sowie komplexe Fallbeispiele zur Nachhaltigkeit durchführen und umsetzen.

Kompetenzen:

Durch die aufgebaute Kompetenz soll erreicht werden, dass die Studierenden eigenständig und verantwortungsvoll Zertifizierungen in der Praxis begleiten und bewerten können.

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Das Modul Nachhaltiges Bauen II ist ein Kernbereichsfach der Studienrichtung Umwelt.

Zugangs- bzw. empfohlene Voraussetzungen

Nachhaltiges Bauen I (Green Building I)

Inhalt

- o Gebäudezertifizierungssysteme nach LEED, DGNB, BNB,
- o Umweltmanagementsystem nach DIN EN ISO 14001 und EMAS,
- o Energiemanagementsystem nach DIN EN ISO 50001,
- o cradle to cradle: Ein Ansatz in der Kreislaufwirtschaft
- o Baustoffe, Materialien für das Nachhaltige Bauen
- o Nachhaltigkeit, Agenda 2030
- o Regionales Bauen, wohngesundes Bauen
- o Reuse Recycling Neues Bauen
- o Wartung, Instandhaltung, Sanierung, Verwertung
- o Nachhaltige Architektur und Baukonstruktion

Lehr- und Lernmethoden

Seminaristischer Unterricht (SU), Übung (Ü), Seminar (S)

Teile des Moduls werden von Lehrbeauftragten durchgeführt.

Empfohlene Literaturliste

DIN EN ISO-Norm 14001 ("Umweltmanagementsysteme - Anforderungen mit Anleitung zur Anwendung ")

EMAS ("Umweltmanagement und Betriebsprüfung")

DIN EN ISO Norm 50001 (Energiemanagementsysteme - Anforderungen mit Anleitung zur Anwendung)

Kreislaufwirtschaftsgesetz KrWG (Gesetz zur Förderung der Kreislaufwirtschaft und Sicherung der umweltverträglichen Bewirtschaftung von Abfällen)

Kriterienstreckbriefe des Bewertungssystems für Nachhaltiges Bauen für Bundesgebäude (BNB)

https://www.nachhaltigesbauen.de

http://www.oekobaudat.de/

https://www.bmz.de/de/ministerium/ziele/2030_agenda/index.html

OMBU-15 BAUPHYSIK II

Modul Nr.	MBU-15
Modulverantwortliche/r	Prof. Dr. Rudi Marek
Kursnummer und Kursname	Bauphysik II
Lehrende	Prof. Dr. Rudi Marek
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Kern- / Wahlpflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 30 Stunden
	Selbststudium: 75 Stunden
	Virtueller Anteil: 45 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/90
11 1 1 1 1 1	Deutsch
Unterrichts-/Lehrsprache	Deutsch
Unterrichts-/Lenrsprache	Deutsch

Qualifikationsziele des Moduls

Kenntnisse

Die Studierenden vertiefen vorhandene Kenntnisse der feuchten Luft und der Wasserdampfdiffusion. Sie lernen im Feuchteschutz das Monatsbilanzverfahren und hygrische Simulationen kennen. Sie sind ferner mit den Einflussgrößen auf das Raumklima in Gebäuden und die thermische Behaglichkeit vertraut. Sie können die auf transparente Bauteile auftreffende Solarstrahlung berechnen und kennen die strahlungsphysikalischen Kenngrößen von Verglasungen und Sonnenschutzeinrichtungen. Die Potentiale der regenerativen Kühlung sind ihnen bekannt. Sie sind mit den physikalischen Mechanismen der Aerophysik sowie des stationären und instationären Wärmetransports vertraut und kennen die relevanten physikalischen Gesetze, Regelwerke, Modelle und Berechnungs- sowie Bilanzierungsverfahren. Sie kennen neben den Nachweisverfahren des Schallschutzes auch Verfahren zur Berechnung der Schallausbreitung von Schienen- und Straßenverkehr.

Fertigkeiten

Die Studierenden können aerophysikalische Simulationen der natürlichen Gebäudelüftung durchführen und die Ergebnisse plausibilisieren. Sie sind befähigt, die gängigen Nachweise zur Bewertung des sommerlichen Wärmeschutzes auf Basis

nationaler und europäischer Normen auch in komplexen Fällen zu führen und tageslichttechnische Aspekte angemessen zu berücksichtigen. Die Studierenden können die Modelle des instationären Wärmetransports auf praktische Fragestellungen sicher anwenden. Anhand praxisbezogener Fragestellungen werden sie zum sicheren und detaillierten Umgang mit bauphysikalischer Software im Bereich des energiesparenden Wärmeschutzes befähigt und können diesen regelkonform für Wohngebäude nachweisen. Sie können ferner energiesparende und bauphysikalisch optimierte Gebäudekonzepte entwickeln. Die Studierenden sind zudem in der Lage die Nachweise des Feuchte- und des Schallschutzes korrekt und fachgerecht zu führen und die Ergebnisse eigenständig umfassend zu interpretieren.

Kompetenzen

Sie erwerben die Kompetenz, neue, bauphysikalisch komplexe Systeme in Bezug auf EDV-gestützte Berechnungen und Nachweise des Wärme-, Feuchte- und Schallschutzes zu analysieren und geeignet aufzubereiten. Sie erlangen ferner die Kompetenz, gesamtenergetisch ausgewogene Anlagen- und Fassadenkonzepte unter Ausschöpfung geeigneter baulicher Maßnahmen und Verzicht auf mechanische Kühlmaßnahmen zu entwickeln und simluationstechnisch zu begleiten.

Verwendbarkeit in diesem und in anderen Studiengängen

Gesamtenergieeffizienz von Gebäuden

Das Modul Bauphysik II ist Kernbereichsfach der Studienrichtung Umwelt.

Zugangs- bzw. empfohlene Voraussetzungen

Bauphysik I

Inhalt

I. Feuchteschutz

- o Kenngrößen und Zustandsänderungen Feuchter Luft
- o Feuchtetransportmechanismen
- o Schutz vor Tauwasser- und Schimmelpilzbildung
- o Glaser-Verfahren nach DIN 4108/3
- o Monatsbilanzverfahren nach DIN EN ISO 13788
- o Feuchtetechnische Simulationen nach DIN EN 15026

II. Aerophysik

o Grundlagen der Aerophysik

- o Thermisch und windinduzierte Gebäudelüftung
- o Dimensionierung von Einrichtungen zur natürlichen Lüftung

III. Wärmeschutz

- o Stationärer Wärmetransport, thermische Widerstände und elektrische Analogie
- o Oberflächen- und Schichtgrenztemperaturen ebener und gekrümmter Bauteile
- o Luftschichten, Lufträume und Luftspalte in Bauteilen nach DIN EN ISO 6946
- o Wärmedurchgang bei inhomogenen Bauteilen und bei keilförmigen Schichten
- o Korrekturen für Wärmedurchgangskoeffizienten nach DIN EN ISO 6946
- o Wärmedurchgang bei Fenstern, Fenstertüren, Türen und Toren nach DIN EN ISO 10077
- o Wärmeverlust erdberührter Bauteile nach DIN EN ISO 13370
- o Modelle des instationären Wärmetransports
- o Mindestwärmeschutz nach DIN 4108/2
- o Kenngrößen und Simulation von Wärmebrücken
- o Energiesparender Wärmeschutz nach DIN V 18599
- o Nachweis des energiesparenden Wärmeschutzes gemäß GEG 2024 und EEG
- o Thermische Behaglichkeit, PPD und PMV nach DIN EN ISO 7730
- o Grundlagen der Berechnung und Prognose solarer Strahlung
- o Raumbilanzen und gesamtenergetische Gebäudekonzepte
- o Tageslicht, Verglasungen und Sonnenschutzeinrichtungen
- o Nachweis des sommerlichen Wärmeschutzes nach DIN 4108/2
- o Regenerative Kühlung und Thermoaktive Bauteilsysteme
- o Umfassende Simulationen sowie EDV-gestützte Nachweise und Berechnungen

IV. Schallschutz

- o Grundlagen der Bau- und Raumakustik
- o Schallquellen und Schallausbreitung
- o Mindestschallschutz und erhöhter Schallschutz nach DIN 4109
- o Schallimmission von Straßenverkehr nach 16. BImSchV und RLS-19

o Schallimmission von Schienenverkehr nach 16. BImSchV und Schall 03

Lehr- und Lernmethoden

virtueller Kurs mit Präsenzphasen, EDV-Übungen, eLearning, Videos

Empfohlene Literaturliste

Marek R., Stoll J.: Ausführlicher virtueller Kurs "Bauklimatik und sommerlicher Wärmeschutz" mit zahlreichen Simulationen und Animationen

Marek R.: Tabellen, Gleichungen, Diagramme zur Bauphysik II

Marek R., Nitsche K.: Praxis der Wärmeübertragung, 5., überarbeitete Auflage, Hanser Verlag, München, 2019

Marquardt H.: Energiesparendes Bauen - Ein Praxisbuch für Architekten, Ingenieure und Energieberater; Wohn- und Nichtwohngebäude nach GEG 2023, Bauwerk Beuth Verlag, Berlin, 5. Aufl., 2023

Schmidt P.: Das novellierte Gebäudeenergiegesetz (GEG 2024) Grundlagen, Anwendung in der Praxis, Beispiele, Springer Vieweg, Wiesbaden, 2024

Willems W.M. (Hrsg.): Lehrbuch der Bauphysik, 9. Aufl., Springer Vieweg, Wiesbaden, 2022

Willems W. M., Schild K., Dinter S: Vieweg Handbuch Bauphysik, Bd. 1+2, Vieweg+Teubner, Wiesbaden, 2006

Uponor GmbH (Hrsg.): Praxishandbuch der technischen Gebäudeausrüstung (TGA), Band 2: Gebäudezertifizierung, Raumluft- und Klimatechnik, Energiekonzepte mit thermisch aktiven Bauteilsystemen, geplante Trinkwasserhygiene, Beuth Verlag, Berlin, 1. Aufl., 2013

Koschenz M., Lehmann B.: Thermoaktive Bauteilsysteme tabs, EMPA Dübendorf (CH), 2000

Dols W.S. and Polidoro B.J.: CONTAM User Guide and Program Documentation, NIST Technical Note 1887 Rev. 1, Version 3.4, August 2020

Lawrence Berkeley National Laboratory: NFRC WINDOW 7 / THERM 7 Simulation Manual, July 2024

Zentrum für Umweltbewußtes Bauen: ZUB Helena Ultra, ZUB Esther und ZUB Sommer (in jeweils aktueller Version)

Gebäudeenergiegesetz und verschiedene nationale Normen und Regelwerke in der jeweils aktuell gültigen Fassung

○MBU-16 MESSEN, STEUERN, REGELN

Modul Nr.	MBU-16
Modulverantwortliche/r	Prof. Dr. Peter Ullrich
Kursnummer und Kursname	Messen, Steuern, Regeln
Lehrende	Prof. Dr. Peter Ullrich
	Manfred Brandl
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Kern- / Wahlpflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

In diesem Modul erhalten die Studierenden umfassende Kenntnisse in den (sich oft überschneidenden) Gebieten der Messtechnik, der Steuerungstechnik und der Regelungstechnik.

Kenntnisse

Die Studierenden sollen grundlegende mess- und regelungstechnische Kenntnisse erwerben und ein vertieftes Verständnis für die Regelung und Steuerung gebäudetechnischer Anlagen entwickeln. Dabei sollen sie auch die gängigen Systeme und Technologien der Gebäudeautomation kennenlernen.

Fertigkeiten

Die Studierenden sollen die erworbenen Kenntnisse sicher auf regelungstechnische Fragestellungen anwenden und einfache Regelkreise analysieren und auslegen können.

Kompetenzen

Die Studierenden sollen aufgrund ihres Wissens und ihrer erworbenen Fähigkeiten eine Gewerke übergreifende Schnittstellenkompetenz sowie eine umfassende Dialogfähigkeit erlangen.

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Das Modul "Messen, Steuern, Regeln" ist ein Kernbereichsfach der Studienrichtung Umwelt.

Zugangs- bzw. empfohlene Voraussetzungen

Gebäudetechnik I, Ingenieuranalyse und Modellierung

Inhalt

- o Grundfunktionen, Normen und Struktur der Gebäudeautomation
- o Messtechnik
- o Steuerungstechnik
- o Regelungstechnik: Mathematische Hilfsmittel, Laplace-Transformation
- o Regelkreisglieder
- o Regelstrecke
- o Regler
- o Gebäudeautomation Systemgrundlagen
- o Automationsebene
- o Netzwerke und Kommunikationsprotokolle
- o Datenprotokolle

Lehr- und Lernmethoden

Seminaristischer Unterricht mit Übungen

Teile des Moduls werden von einem Lehrbeauftragten durchgeführt.

Empfohlene Literaturliste

Unbehauen H.: Regelungstechnik I ? Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme, Fuzzy-Regelsysteme, 15., überarb. u. erw. Aufl., Vieweg+Teubner, 2008

Zacher S., Reuter R.: Regelungstechnik für Ingenieure? Analyse, Simulation und Entwurf von Regelkreisen, 15., korr. Aufl., Springer Vieweg, 2017

Zacher S.: Übungsbuch Regelungstechnik ? Klassische, modell- und wissensbasierte Verfahren, 6., korr. Und aktualis. Aufl., Springer Vieweg 2016

Lunze J.: Regelungstechnik 1 ? Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen, 12., überarb. Aufl., Springer Vieweg, 2020

Schneider W.: Praktische Regelungstechnik? Ein Lehr- und Übungsbuch für Nicht-Elektrotechniker, 4., überarb. Aufl., Springer Vieweg 2017

Orlowski P.F.: Praktische Regeltechnik? Anwendungsorientierte Einführung für Maschinenbauer und Elektrotechniker, 10., überarb. Aufl., Springer Vieweg 2013

Aschendorf B.: Energiemanagement durch Gebäudeautomation? Grundlagen? Technologien? Anwendungen, Springer Vieweg, 2014

Balow J.: Systeme der Gebäudeautomation ? Ein Handbuch zum Planen, Errichten, Nutzen, 2., vollst. überarb. und erw. Auflage, cci Dialog, 2016

Scherg R.: EIB-, KNX-Anlagen planen, installieren und visualisieren ? Planung, Installation und Visualisierung in der Gebäudesystemtechnik, Vogel Verlag, 2011

Merz H., Hansemann T., Hübner C.: Gebäudeautomation? Kommunikationssysteme mit EIB/KNX, LON und BACnet, 4., neu bearb. Aufl., Hanser Verlag, 2021

Recknagel, Sprenger, Schramek: Taschenbuch für Heizung und Klimatechnik 2021/2022, 80. Aufl., ITM InnoTech Medien, 2020

OMBU-17 RECYCLING UND ENTSORGUNG

Modul Nr.	MBU-17
Modulverantwortliche/r	Prof. Dr. Karl-Heinz Dreihäupl
Kursnummer und Kursname	Recycling und Entsorgung
Lehrende	Martin Eiberweiser
	Prof. Dr. Karl-Heinz Dreihäupl
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Kern- / Wahlpflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Bau- und Umweltingenieure treffen regelmäßig auf Altlasten und Gebäudeschadstoffe (z.B. Bodenbelastung, Grundwasser, Radioaktivität, etc.). Die Bewertung ökonomischer, ökologischer und toxikologischer Aspekte von Baumaterialien ist notwendig. Die Studierenden erwerben in diesem Modul umfassende Kenntnisse der Kreislauf- und Entsorgungswirtschaft sowie der Altlastenbehandlung.

Kenntnisse

- o Rechtsgrundlagen der Kreislaufwirtschaft
- o Zusammensetzung und Eigenschaften von Abfällen
- o Qualifizierte Probenahme
- o Abfallverwertung und -recycling
- o Entsorgungswege von Abfällen
- o Deponietechnik
- o Altlastenerfassung

Fertigkeiten

- o Konzepte für die o.g. Themenfelder entwickeln
- o Bemessungsregeln verstehen und anwenden können
- o Konzepte zur Altlastensanierung und zum Bodenschutz planen und dimensionieren

Kompetenzen

- o Verständnis für die interdisziplinären und ökologischen Aufgaben der Entsorgungswirschaft
- o Altlastenbehandlung als Teil des Umweltschutzes
- o Fähigkeit zur Mitwirkung bei Rückbauplanungen

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Das Modul "Recycling und Entsorgung" ist ein Kernbereichsfach der Studienrichtung Umwelt.

Zugangs- bzw. empfohlene Voraussetzungen

Grundlagen der Entsorgungswirtschaft

Inhalt

- o Abfallarten bei Rückbaumaßnahmen
- o gesetzliche Regeln zur Bewertung und Entsorgung
- o Behandlung von Bau- und Abbruchabfällen
- o Probenahmestrategien
- o Erfassung von Altlasten
- o Bewertung von analytischen Untersuchungen
- o Sanierungsvarianten von Altlasten
- o Deponiesanierung- und abdichtung
- o Weiterverwendung recycelter Abfälle
- o Gefährliche Abfälle und elektronischer Entsorgungsnachweis

Lehr- und Lernmethoden

seminaristischer Unterricht, eigenständiges Bearbeiten von Problemstellungen der Entsorgung.

Empfohlene Literaturliste

Altlasten: Erkennen, Bewerten, Sanieren; Neumeier, Weber (Hrsg.); Springer Verlag, 3. Aufl. 1996

Vorlesungsskripte

OMBU-18 INDUSTRIEABWASSERREINIGUNG UND TOXIKOLOGIE

Modul Nr.	MBU-18
Modulverantwortliche/r	Prof. Dr. Andrea Deininger
Kursnummer und Kursname	Industrieabwasserreinigung und Toxikologie
Lehrende	Prof. Dr. Karl-Heinz Dreihäupl
	Prof. Dr. Andrea Deininger
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Kern- / Wahlpflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 120 Min.
Dauer der Modulprüfung	120 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Das Modul befasst sich mit speziellen Gesichtspunkten der industriellen Abwasserreinigung und der Toxikologie. Es werden zunächst die unterschiedlichen Zusammensetzungen von Industrieabwasser behandelt. Dann werden die theoretischen Grundlagen und die Einsatzgebiete von Verfahren der Industrieabwasserbehandlung erarbeitet. Es erfolgt eine Vermittlung von vertieften Kenntnissen in Bezug auf Planung, Bau und Betrieb von Anlagen der industriellen Abwasserreinigung.

Kenntnisse

- o Gesetzliche Anforderungen
- o Verfahren und Verfahrensvarianten der Kreislaufführung, integrierte Umweltschutzmaßnahmen
- o Verfahren der Abwasserreinigung (mechanisch, biologisch), z.B. Flotation, Filtration, Sedimentation, anaerobe Abwasserreinigung, thermische Verfahren, Misch- und Ausgleichbehälter, Neutralisation etc.

- o Spezifische Gegebenheiten verschiedener Abwässer hinsichtlich ihrer Umwelttoxizität.
- o Beispiele

Fertigkeiten

- o Anwendung der Bemessungsrichtlinien für entsprechender Anlagen
- o Betrachtung von Praxis- und Übungsbeispielen
- o Anwenden von neuen Dimensionierungsverfahren
- o Kreatives Entwickeln von Anlagen zur Industrieabwasserreinigung
- o Nachweisen von vorhandenen industriellen Abwasseranlage
- o Unterschieden und Auswählen von verschiedenen Verfahren zur Industrieabwasserbehandlung

Kompetenzen

- o Selbständige Bemessung und Dimensionierung von Abwasserreinigungsanlagen verschiedener Industriezweige wie z.B. Molkereien, Brauereien, Papierfabriken etc.
- o Selbständige Bewertung von bestehenden Abwasserreinigungsanlagen verschiedener Industriezweige
- o Die Studierenden können anhand der Kenntnisse über die Toxikologie der verschiedenen Schadstoffarten die Umweltrelevanz des Abwassers bewerten und eine geeignete Aufbereitungsmethode wählen.
- o Die Studierenden sind in der Lage, verschiedene Anlagenkonzepte verantwortlich auszusuchen, zu bewerten und zu implementieren.

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. beim Anfertigen der Masterarbeit

Das Modul Industrieabwasserreinigung und Toxikologie ist ein Kernbereichsfach der Studienrichtung Umwelt.

Zugangs- bzw. empfohlene Voraussetzungen

Chemie, Umweltanalytik, Abwasserentsorgung oder vergleichbare Lehrveranstaltungen

Inhalt

- o Gesetzliche Grundlagen
- o Integrierte Umweltschutzmaßnahmen
- o Grundlagen der Industrieabwasserreinigung
- o Abwasseranfall, Abwasserinhaltsstoffe
- o Verschiedene Verfahren zur Behandlung von Industrieabwasser
- o Vor- und Nachbehandlung
- o Mechanisch-physikalische Verfahren (Flotation, Filtration, Sedimentation, Zentrifugation...)
- Aerobe und anaerobe Abwasserreinigung
- o Chemische Verfahren
- o Neutralisation etc.
- o Umwelttoxikologie anorganischer und organischer Substanzen
- o Behandlung der Reststoffe
- o Verbleib / Redistribution in die Umwelt.
- o Unterschiede zu kommunaler Abwasserreinigung
- Abwasserinhaltsstoffe und deren Charakterisierung, Toxikologie anorganischer und organischer persistenter Substanzen, Wirkung auf lebende Organismen, Metabolismus
- o Planungsvoraussetzungen
- o Innerbetriebliche Maßnahmen
- o Behandlung der Reststoffe (Klärschlämme), Verbleib / Redistribution in die Umwelt, Natural Attenuation
- o Beispiele
- o Exkursion

Lehr- und Lernmethoden

Seminaristischer Unterricht mit Berechnungsbeispielen, Exkursionen

Empfohlene Literaturliste

Industrial Wastewater Management, Treatment, and Disposal, 3e MOP FD-3 (WEF Manual of Practice) by Water Environment Federation (Jun 17, 2020)

Industrial Wastewater Treatment, Recycling and Reuse by Vivek V. Ranade and Vinay M Bhandari (2014)

Wastewater Engineering: Treatment and Resource Recovery by Inc. Metcalf & Eddy, George Tchobanoglous, H. David Stensel and Ryujiro Tsuchihashi (2013)

Hans-Werner Vohr, Toxikologie, Band 2: Toxikologie der Stoffe, Wiley-VCH (2015)

Imhoff , K., Jardin, N. und Imhoff, und K., 2016, Taschenbuch der Stadtentwässerung, Oldenbourg Industrieverlag, München.

Rosenwinkel, K.-H., Austermann, U., Taschenbuch der Industrieabwasserreinigung, Vulkan Verlag (2019)

DWA-M 708 Abwasser aus der Milchverarbeitung, Hennef (2021)

OMBU-19 GEBÄUDETECHNIK II

Modul Nr.	MBU-19
Modulverantwortliche/r	Prof. Dr. Rudi Marek
Kursnummer und Kursname	Gebäudetechnik II
Lehrende	Matthias Obermaier
Semester	Sommer
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Kern- / Wahlpflichtfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	Portfolio
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden erweitern die im Rahmen des Bachelor-Moduls "Gebäudetechnik I" erhaltenen Kenntnisse der Technischen Gebäudeausrüstung aus den Gewerken Heizungstechnik, Lüftungs- und Klimatechnik, Sanitärtechnik und Elektrotechnik (HLKSE) und vertiefen diese projektbezogen.

Kenntnisse

- o Analyse und Bewertung von Anlagen der Technischen Gebäudeausrüstung
- o Ganzheitliche Energie- und Klimaschutzkonzepte
- o Energieeffizienz
- o Energiemanagement und Energieberatung

Fertigkeiten

- o Entwicklung von Gewerke übergreifenden Energie- und Klimaschutzkonzepten für technische Anlagen anhand eines praktischen Projekts
- o fachgerechte Analyse und Bewertung vorhandener technischer Anlagen und Komponenten

Kompetenzen

- o sichere und zielgerichtete Anwendung des Wissens und der erworbenen Fertigkeiten zur Lösung neuer Fragestellungen aus der Praxis
- o eigenständige und situationsbezogene Aneignung von neuem und spezifischem Wissen
- o selbstständige und kritische Bewertung von komplexen Fragestellungen der Technischen Gebäudeausrüstung sowie interdisziplinäre Umsetzung der zugehörigen Systeme

Verwendbarkeit in diesem und in anderen Studiengängen

Gesamtenergieeffizienz von Gebäuden

Gebäudetechnik II ist ein Kernbereichsfach der Studienrichtung Umwelt

Zugangs- bzw. empfohlene Voraussetzungen

Gebäudetechnik I, Wirtschaftlichkeitsanalyse, Wärmeübertragung, Thermodynamik, Nachhaltiges Bauen, Regenerative Energien I

Inhalt

- o Rechtliche Rahmenbedingungen
- o Vorteile / Nutzen von Energetischen Analysen
- o Anwendung erneuerbarer Energien
- o Alternative Energieformen
- o Analyse bestehender Energierechnungen / -verträge
- o Aufzeigen von Förderprogrammen
- o Wirtschaftlichkeitsberechnungen
- o CO2-Bilanz
- o Analyse und Bewertung von Anlagen der Technischen Gebäudeausrüstung
- o Ganzheitliche Energie- und Klimaschutzkonzepte
- o Energieeffizienz
- o Energiemanagement und -beratung

Lehr- und Lernmethoden

Projektstudium mit begleitenden Lehrveranstaltungen

Das Modul wird von einem Lehrbeauftragten durchgeführt.

Empfohlene Literaturliste

Pfeiffer M., Bethe A., Janßen H., Fanslau-Görltiz D.: Gebäude-Energieberatung - Grundlagen, Systeme, Anwendung, Hüthig Verlag, 2022

Reiman G.: Erfolgreiches Energiemanagement nach DIN EN ISO 50001:2018 - Lösungen zur praktischen Umsetzung, Textbeispiele, Musterformulare, Checklisten, Beuth Verlag, 2019

Girbig P.: Energiemanagement gemäß DIN EN ISO 50001 - Systematische Wege zu mehr Energieeffizienz, 2., überarb. u. erw. Aufl., Beuth Verlag, 2016

DIN Taschenbuch 415: Energiemanagement - Energiemanagementsysteme und Energieaudits, Beuth Verlag, 2019

Bränzel J., Engelmann D., Geilhausen M., Schulze O.: Energiemanagement - Praxisbuch für Fachkräfte, Berater und Manager, 2., überarb. Aufl., Springer Vieweg, 2020

Wosnitza F., Hilgers H.G.: Energieeffizienz und Energiemanagement - Ein Überblick heutiger Möglichkeiten und Notwendigkeiten, Springer Vieweg, 2012

Hubbuch M., Jäschke Brülhart S.: Energiemanagement, vdf Hochschulverlag, 2., vollständig überarb. Aufl., 2021

Aschendorf B.: Energiemanagement durch Gebäudeautomation - Grundlagen - Technologien - Anwendungen, Springer Vieweg, 2014

Jung U.: Handbuch Energieberatung - Recht und Technik in der Praxis für Energieberater, Bauingenieure und Architekten, 2., überarb. Aufl., Bundesanzeiger Verlag, 2014

Albers K.-J. (Hrsg.): Recknagel - Taschenbuch für Heizung und Klimatechnik, 80. Ausgabe 2021/22 - Basisversion, ITM InnoTech Medien, 2020

Pistohl W., Rechenauer C., Scheuerer B.: Handbuch der Gebäudetechnik, Bd. 1: Allgemeines - Sanitär - Elektro - Gas, 9., überarb. Aufl., Reguvis Fachmedien, 2016

Pistohl W., Rechenauer C., Scheuerer B.: Handbuch der Gebäudetechnik, Bd. 2: Heizung - Lüftung - Beleuchtung - Energiesparen, 9., überarb. Aufl., Reguvis Fachmedien, 2016

Baukosteninformationszentrum (BKI): Objektdaten Energieeffizientes Bauen - Neubau und Altbau, R. Müller Verlag, 2021

Gebäudeenergiegesetz sowie weitere Verordnungen und Normen in der jeweils aktuell gültigen Fassung

OMBU-20W MASSIVBAU III

Modul Nr.	MBU-20W
Modulverantwortliche/r	Prof. Dr. Florian Jonas
Kursnummer und Kursname	Massivbau III
Lehrende	Prof. Dr. Florian Jonas
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Wahlfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 30 Stunden
	Selbststudium: 90 Stunden
	Virtueller Anteil: 30 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden erlangen in diesem Modul vertiefte Kenntnisse im Massivbau in Bezug auf die Bemessung im Grenzzustand der Tragfähigkeit und der Gebrauchstauglichkeit, sowie deren theoretische Hintergründe. Sie werden befähigt, komplexe ingenieurtechnische Fragestellungen im Stahlbeton- und Spannbetonbau unter Berücksichtigung nichtlinearen und zeitabhängigen Materialverhaltens zu lösen. Sie erlernen praxisgerechte Methoden zur Berechnung und Bemessung von Bauteilen und Bauwerken in Massivbauweise und können diese anwenden.

Kenntnisse:

- Wirklichkeitsnahes Werkstoffverhalten von Beton, Auswahl aufgabengerechter Spannungs-Dehnungslinien, Wirklichkeitsnahes Tragverhalten von Stahl- und Spannbeton
- o Vertiefte Kenntnisse zur Verformungsberechnung von Bauteilen, Mitwirkung des Betons auf Zug
- o Vertiefte Kenntnisse zur Ermittlung von Spannungen in Stahl- und Spannbetonquerschnitten bei Rissbildung und Zeitabhängigkeit
- o Schnittgrößenermittlung infolge Rissbildung, Kriechen, Schwinden und Umlagerung

- o Auswirkung der Wahl der Vorspannung auf verschiedene statische Systeme
- o Bemessung von Diskontinuitätsbereichen

Fertigkeiten:

- o Konstruktion, Berechnung und Bemessung von Bauteilen und Tragwerken aus Stahlbeton- und Spannbeton für schwierige Fragestellungen.
- Berechnung von Biegeverformungen im gerissenen Zustand im Grenzzustand der Gebrauchstauglichkeit unter Berücksichtigung von Kriechen und Schwinden (z. B. Ermitteln der Momenten-Verkrümmungs-Beziehung und Integration nach Simpson)
- o Berechnung von Schnittgrößen und Spannungen für vorgespannte Tragwerke unter Berücksichtigung verschiedener Bauzustände, insbesondere für Querschnitts- und Systemumlagerung
- o Entwurf und Anwendung von Stabwerkmodellen zur Bemessung von Tragwerksteilen oder Details
- Ermittlung von Schnittkräften für statisch unbestimmte Tragsysteme unter Berücksichtigung der statisch bestimmten und statisch unbestimmten Wirkung der Vorspannung

Kompetenzen:

Befähigung zur Wahl und eigenständigen Durchführung effizienter
 Vorgehensweisen zur Berechnung und Bemessung von Bauteilen in
 Massivbauweise, sowie zu deren Reflektion und deren fachlichen Diskussion.

Verwendbarkeit in diesem und in anderen Studiengängen

Grundlage und Ergänzung der Lehrinhalte sämlicher konstruktiver Fächer u.U. zur Anfertigung der Masterarbeit

Zugangs- bzw. empfohlene Voraussetzungen

Technische Mechanik, Werkstoffe im Bauwesen, Stahlbau I, Holzbau I, Massivbau I und II, Baustatik I, II und III

Inhalt

- o Spannstähle
- o Spannstahlarten
- o Vorspannarten und Spannverfahren

- o Schnittgrößen aus Vorspannung
- o Nachweise für den Grenzzustand der Gebrauchstauglichkeit
- o Nachweise für den Grenzzustand der Tragfähigkeit
- o Bauliche Durchbildung
- o Zeitabhängiges Verhalten von Stahlbeton- und Spannbetonbauteilen
- o Nichtlineare Kraft-Verformungsbeziehung von Stahlbeton- und Spannbetonbauteilen, genaue Verformungsberechnung
- o Schnittgrößenumlagerung infolge Rissbildung
- o Schnittgrößenumlagerungen infolge Kriechen und Schwinden bei Systemwechsel
- o Querschnittsumlagerung
- o Systemumlagerung
- o Stabwerksmodelle und konstruktive Durchbildung von Stahlbeton- und Spannbetonbauteile

Lehr- und Lernmethoden

seminaristischer Unterricht, Übungen

Empfohlene Literaturliste

Zilch, Zehetmaier (2010) Bemessung im Konstruktiven Betonbau, https://doi.org/10.1007/978-3-540-70638-0;

Fingerloos, Hegger, Zilch (2016) EUROCODE 2 für Deutschland, Kommentierte und konsolidierte Fassung, 2. Auflage;

Albert, Denk, Lubasch, Nitsch (2024) Spannbeton, Grundlagen und Anwendungsbeispiele;

Finckh (2023) Mit Stabwerksmodellen zur Bewehrungsführung, Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-40882-4;

Rombach (2010) Spannbetonbau, Ernst und Sohn Verlag, Berlin.

Normen und Erläuterungen:

DIN EN 1990; Grundlagen der Tragwerksplanung;

DIN EN 1991; Einwirkungen auf Tragwerke; verschiedene Teile

DIN EN 1992; Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken; verschiedene Teile

DAfStb (2020) Heft 600, Erläuterungen zu DIN EN 1992-1-1 und DIN EN 1992-1-1/NA DIN EN 1993; Bemessung und Konstruktion von Stahlbauten; verschiedene Teile

OMBU-21W PRAXIS DER BAUDYNAMIK

Modul Nr.	MBU-21W
Modulverantwortliche/r	Prof. Dr. Florian Neuner
Kursnummer und Kursname	Praxis der Baudynamik
Lehrende	DrIng. Norbert Breitsamter
Semester	Sommer
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Wahlfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden sollen ihre baudynamischen Kenntnisse und Fertigkeiten vertiefen und befähigt werden, einfache Problemstellungen der Baudynamik, insbesondere im Bereich des Erschütterungsschutzes, eigenverantwortlich zu analysieren und einer praxisgerechte Lösung zuzuführen.

Kenntnisse

- o Erschütterungsschutz allgemein
- o Erschütterungen aus Eisenbahnverkehr
- o Erschütterungen aus Industrieanlagen
- o Maschinenaufstellung
- o Schallschutzwände an Bahnstrecken
- o Eisenbahnbrücken
- o Erschütterungen aus Baubetrieb

Fertigkeiten

- o Prognose von Erschütterungen,
- o Interpretation von Versuchsergebnissen,
- o Ausarbeitung von Maßnahmen

Kompetenzen

- o eigenverantwortliche Analyse einfacher Problemstellungen der Baudynamik, insbesondere im Bereich des Erschütterungsschutzes
- o eigenständige Entwicklung praxisgerechter Lösungen für Problemstellungen der Baudynamik

Verwendbarkeit in diesem und in anderen Studiengängen

Ergänzung der Lehrinhalte sämtlicher konstruktiver Fächer.

Zugangs- bzw. empfohlene Voraussetzungen

Grundlagen der Baudynamik

Inhalt

- o Erschütterungsschutz allgemein
 - o Abgrenzung zur klassischen Baudynamik und zur Akustik
 - o Erklärung KB-Wert, Sekundärluftschall, Terzschnellespektren, Pegeldarstellung
 - o Messung (Freifeld)
 - o Prognose für Gebäude: einfaches Prognosemodell
 - o Reduktionsmaßnahmen: elastische Gebäudelagerung, Einfügungsdämmung
 - o Auslegung, Baubegleitung, Nachmessung
- o Erschütterungen aus Eisenbahnverkehr:
 - o Entstehung, Ausbreitung
 - Modellierung iSi
 - o Reduktionsmaßnahmen am Gleis
 - o (Unterschottermatten, Masse-Feder-Systeme usw.)
- o Erschütterungen aus Industrieanlagen:

- o Entstehung, Ausbreitung
- o Modellierung
- o Maßnahmen an der Maschine (Elastische Maschinenlagerung)
- o Maschinenaufstellung:
 - o Berechnung der dynamischen Lagerkräfte
 - o Abhilfemaßnahmen gegen Schwingungen
- o Schallschutzwände an Bahnstrecken:
 - o Schwingungen infolge Luftdruck
 - o Nachweis der Standsicherheit mittels Schwingungsmessung
 - o Vergleich Messung / Berechnung
- o Eisenbahnbrücken:
 - o Nachweis der Standsicherheit mittels Schwingungsmessung
 - o Vergleich Messung / Berechnung
- o Erschütterungen aus Baubetrieb:
 - o Spundwände, Verdichten, Abbrucharbeiten
 - o Rüttelversuch, Dauerüberwachung

Lehr- und Lernmethoden

Seminaristischer Unterricht, Übung

Besonderes

Exkursion zu einer nahegelegenen Industrieanlage (z.B. BMW-Werk Dingolfing oder Papierfabrik Plattling)

Empfohlene Literaturliste

Breitsamter N.: Praxis der Baudynamik, Skriptum zur Vorlesung (laufend aktualisiert)

Eibl J., Häussler-Combe U.: Aufsatz Baudynamik, Betonkalender 1997 (auch 1988), Ernst & Sohn

Petersen: Werkle: Dynamik der Baukonstruktionen. Vieweg 2017

Haupt W. (Hrsg.): Bodendynamik, Grundlagen und Anwendung, Vieweg 1986

Müller/Möser: Taschenbuch der technischen Akustik, Springer

OMBU-22W DIGITALES PLANEN UND BAUEN (BIM)

Modul Nr.	MBU-22W
Modulverantwortliche/r	Prof. Dr. Gerd Maurer
Kursnummer und Kursname	Digitales Planen und Bauen (BIM)
Lehrende	Prof. Dr. Gerd Maurer
Semester	Sommer
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Wahlfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	PStA, 2 Präsentationen a 30 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

In diesem Modul werden den Studierenden wichtige Kenntnisse im Digitalen Planen und Bauen (BIM) vermittelt.

Kenntnisse

o Verständnis der Anforderungen an eine gemeinsam auszuführende modellgestützte Planung (BIM 3D)

Fertigkeiten

- o Erstellen von Auftraggeber-Informationsanforderungen (AIA) und BIM-Abwicklungsplänen (BAP)
- o Anwenden von Kollisionsprüfungen
- o Bemusterung
- o Durchführen modellgestützter LV-Erstellung
- o Planung der Baustelleneinrichtung, der Bauablaufplanung und Angebotskalkulation
- o 3D-Laserscan

Kompetenzen

o Selbständiger und verantwortungsvoller Einsatz von BIM in der Planung sowie beim Bauen

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Zugangs- bzw. empfohlene Voraussetzungen

keine

Inhalt

- o Grundlagen der Zusammenarbeit: BIM-Management Stakeholder Digital Collaboration
- o Kollisionsprüfung
- o Bemusterung des Gesamtmodells
- o Erstellen Leistungsverzeichnis
- o Erste Kostenberechnung
- o Kostenoptimierungen
- o Ablaufsimulation
- o Abrechnung
- o Projektcontrolling
- o Bauablaufplanung und Terminplanung
- o 3D-Modell auf der Baustelle
- o BIM im Facility Management
- o BIM in der Gebäudeausrüstung
- o EDV-Workshop iTWO (oder gleichwertiges Programm)

Lehr- und Lernmethoden

seminaristischer Unterricht, Übungen

Empfohlene Literaturliste

Vorlesungsmanuskript

Baldwin, Mark, Der BIM-Manager, Praktoische Anleitung für das BIM-Projektmanagement, buildingsmart, Mensch&Maschine, 2018, Beuth-Verlag

Borrmann, André; König, Markus, Building Information Modeling - Technologische Grundlagen und industrielle Praxis, 2022, Springer-Verlag

MBU-23W SCHLÜSSELFERTIGBAU/ TECHNISCHER AUSBAU

MBU-23W
Prof. Dr. Kurt Häberl
Schlüsselfertig Bau / Technischer Ausbau
Sommer
1 Semester
jährlich
Wahlfach
Master
4
5
Präsenzzeit: 60 Stunden
Selbststudium: 90 Stunden
Gesamt: 150 Stunden
Endnotenbildende PStA
5/90
Deutsch

Qualifikationsziele des Moduls

Mit zunehmender Bedeutung von Gebäuden als Investitionsobjekt und der zunehmenden Komplexität der Bauaufgaben werden heute Bauaufgaben als Komplettleistung an eine Hand vergeben.

Kenntnisse

Der Studierenden kennen die Besonderheiten der Aufgabenstellung und sind in der Lage, die Bearbeitung von schlüsselfertigen Bauaufgaben durchzuführen.

Fertigkeiten

- o Verstehen und Bewerten von Ausschreibungsformen und Vergabevorgängen im Schlüsselfertigbau
- o Überprüfen und Analysieren allgemeiner Unternehmensformen, wirtschaftlicher Grundlagen und Grundlagen der technischen Gebäudeausrüstung
- o Umsetzen und Anwenden der Kenntnisse in einem Projekt

Kompetenzen

Die Studierenden sind befähigt, die Grundlagen des Schlüsselfertigbaus in einem Projekt eigenständig und kreativ umzusetzen.

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Zugangs- bzw. empfohlene Voraussetzungen

keine

Inhalt

- o Einführung in den Schlüsselfertigbau
- o Ausschreibungsformen im Schlüsselfertigbau
- o Konstruktive, funktionale Vergabe von Nachunternehmerleistungen
- o Funktionsträger im Schlüsselfertigbau
- Unternehmensformen, Bauherr/Investor, Planer, Behörden, Projektleitung usw.
 Vertragswesen im Schlüsselfertigbau Generalunternehmervertrag, Architektenund Ingenieurverträge
- o Allgemeine wirtschaftliche Grundlagen
- o Kostenplanung, Finanzierungsmodelle
- o Ausführungsplanung für Rohbau, Ausbau und Haustechnik
- o Rohbau: Grundlagen, Bauausführung
- o Allgemeiner Ausbau: Grundlagen und Bauausführung für Gewerke wie beispielsweise Trockenbau-, Estrich- oder Fassadenarbeiten
- o Technischer Ausbau (Technische Gebäudeausrüstung): Grundlagen und Bauausführung für Bereiche wie beispielsweise Heizung- und Brauchwassererwärmungsanlagen, Lüftungs- und Klimaanlagen oder Elektroinstallationen (Gebäudeautomation)

Die aus den grundlegenden Vorlesungen bekannten Zusammenhänge werden durch die eigenständige Bearbeitung eines Projektes erweitert und vertieft.

Lehr- und Lernmethoden

Seminaristischer Unterricht, Projektarbeit

Empfohlene Literaturliste

diverse Fachbeiträge und Skripte zur Lehrveranstaltung

OMBU-24W PRAXIS DES BAU- UND UMWELTRECHTS

Modul Nr.	MBU-24W
Modulverantwortliche/r	Prof. Dr. Josef Langenecker
Kursnummer und Kursname	Praxis des Bau- und Umweltrechts
Lehrende	Prof. Dr. Josef Langenecker
Semester	Sommer
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Wahlfach
Niveau	Master
SWS	5
ECTS	5
Workload	Präsenzzeit: 75 Stunden
	Selbststudium: 75 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Ziel des Moduls ist die Vermittlung und Anwendung von vertieften Rechtskenntnissen im Bereich des Bau- und Umweltrechts, Bauarbeitsrechts sowie des Grundbuch- und Grundstücksrechts.

Fachkenntnisse:

- o Vergabe- und Vertragsordnung für Bauleistungen (VOB) Teile A, B und C
- o Bauarbeitsrecht
- o Baugesellschaftsrecht
- o Neue Wettbewerbs- und Vertragsformen
- o Grundbuch- und Grundstücksrecht

Methodenkompetenz:

Verstehen, Anwendung und Analyse o.g. Kenntnisse

Soziale Kompetenzen:

Die Studierenden sind in der Lage, die vertieften Kenntnisse und Fertigkeiten in Rechtsfragen in ihrer späteren Funktion als Vorgesetzte und Führungskräfte im Team umzusetzen und damit ihre fachliche und soziale Kompetenz zum Ausdruck zu bringen.

Verwendbarkeit in diesem und in anderen Studiengängen

Keine

Zugangs- bzw. empfohlene Voraussetzungen

Rechtsvorlesungen aus dem Bachelorstudium

Inhalt

- o Vergabe- und Vertragsordnung für Bauleistungen (VOB) Teile A, B und C
- o Bauarbeitsrecht
- o Baugesellschaftsrecht
- o Neue Wettbewerbs- und Vertragsformen
- o Grundbuch- und Grundstücksrecht

Lehr- und Lernmethoden

seminaristischer Unterricht, Übungen

Teile des Moduls werden von Lehrbeauftragten übernommen

Empfohlene Literaturliste

Vorlesungsskripten

Kapellmann/Messerschmidt, VOB Teile A und B, Beck Verlag, München 7. Auflage 2020

Langenecker/Maurer, Handbuch des Bauarbeitsrechts, Werner Verlag, München 1. Auflage 2004

Püschel/Harreiter, Handbuch zu Grundbuch und Liegenschaftskataster, Boorberg Verlag, Stuttgart 1. Auflage 2008

Schalk, Handbuch Nebenangebote, Werner Verlag, München 1. Auflage 2009

Grüneberg, Bürgerliches Gesetzbuch, 84. Auflage 2025

Arbeitsgesetze, Beck-Texte im dtv, 104. Auflage, 2024

Bauer/Schaub, Grundbuchordnung, 5. Auflage 2023

Beck-Online, Grundbuchordnung, 34. Edition, Stand 01.12.2018

OMBU-25W ADVANCED ENGLISH

Modul Nr.	MBU-25W
Modulverantwortliche/r	Tanja Mertadana
Kursnummer und Kursname	Advanced English
Lehrende	Dozierende für AWP und Sprachen
Semester	Sommer
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Wahlfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 60 Stunden
	Gesamt: 120 Stunden
Prüfungsarten	Siehe Prüfungsplan AWP und Sprachen, schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Englisch

Qualifikationsziele des Moduls

Das Modul Advanced English zielt darauf ab, den Studierenden spezialisierte Sprachkenntnisse zu vermitteln, die für eine kompetente Tätigkeit in einem globalisierten Bereich des Bau- und Umweltingenieurwesens notwendig sind. Das Ziel dabei ist es, die Beziehung der Studierenden zur englischen Sprache im wissenschaftlich-technischen Bereich zu vertiefen und zu verfeinern, damit sie die Sprache effektiv und effizient als praktisches Kommunikationsmittel einsetzen können.

Im Modul werden die vier Grundfertigkeiten - Hören, Lesen, Sprechen und Schreiben - trainiert. Studierende erweitern ihren fachspezifischen Wortschatz und vertiefen ihre Kenntnisse in Bezug auf die sprachlichen Strukturen.

Das Hauptaugenmerk des Moduls ist die Optimierung der Sprachgewandtheit und die Verbesserung der Fähigkeit auf Englisch zu kommunizieren, um anspruchsvolle, längere Texte und Gespräche im fachlichen Kontext klar zu verstehen und wiedergeben. Durch aufgabenbezogene Sprech-, Hör-, Lese- und Schreibaktivitäten optimieren Studierende ihre kommunikativen Fähigkeiten und erweitern ihr Ausdrucksvermögen. Dies ermöglicht ihnen sowohl das Teilnehmen an fachlichen Diskussionen, das Arbeiten im Team, das kompetente und fachkundige Erstellen relevanter Dokumente, und das erfolgreiche Präsentieren auf Englisch.

Nach Abschluss des Moduls haben die Studierenden die folgenden Lernziele erreicht:

Fachkompetenz

Auf dem Niveau Englisch C1 sollten die Studierenden in der Lage sein:

- Die englische Sprache auf einem sicheren Sprachniveau (C1, GER) zu beherrschen und im Bereich des Bau- und Umweltingenieurwesens auch Fachdiskussionen und Verhandlungen zu verstehen und selbstwirksam und fachkundig daran teilzunehmen.
- o Sie verfügen über Fähigkeiten, um Fachliteratur zu verstehen und zu analysieren und auf einem C1 Niveau Texte zu verfassen.
- o Die Studierenden besitzen Wissen über sprachliche Ausdrucksmittel auf C1 Niveau im beruflichen Kontext.
- o Sie verstehen komplexere Inhalte ihres Spezialgebietes und können spontan und flexibel darüber diskutieren.
- o Sie erwerben die Fähigkeit grammatikalische Strukturen funktionell und zielsicher in ihren zukünftigen Berufsfeldern anzuwenden.
- o Sie sind in der Lage klare, detaillierte und ausführliche Präsentationen zu komplexen Themen im Bereich Bau- und Umweltingenieurwesen zu halten und Fragen dazu umfassend zu beantworten.
- o Eigene Meinungen und unterschiedliche Gesichtspunkte, wie auch die Abwägung der Vor- und Nachteile, können effektiv und spontan vorgebracht werden.

Methodenkompetenz

Die Methodenkompetenz bezieht sich auf die Fähigkeit der Studierenden, verschiedene Lern- und Arbeitsmethoden anzuwenden, um ihre sprachlichen und fachlichen Kenntnisse weiterzuentwickeln.

- o Die Studierenden erweitern ihre Fähigkeiten im Spracherwerb, in dem sie ihre individuellen Lernstile reflektieren.
- o Sie können Informationen aus unterschiedlichen englischen Quellen filtern und für Diskussionen und Präsentationen verarbeiten.
- o Sie sind in der Lage aktiv und selbstwirksam an Fachdiskussionen und -debatten im Bereich Bau- und Umweltingenieurwesen teilzunehmen, indem sie Argumente präsentieren und konstruktives Feedback geben.
- o Kritische Reflexion der eigenen Lernfortschritte und -strategien.

Soziale Kompetenz

Die soziale Kompetenz bezieht sich auf die Fähigkeit der Studierenden, in sozialen Interaktionen angemessen zu handeln, effektiv zu kommunizieren und erfolgreich in Gruppen zu arbeiten.

- o Die Studierenden trainieren ihre sozialen Kompetenzen der Teamfähigkeit, Zuverlässigkeit und des Verhandlungsgeschicks.
- o Sie verfügen über kommunikative Fertigkeiten gemeinsam mit anderen Lösungen zu erarbeiten.
- o Sie reflektieren ihre Lernerfahrungen aus eigenständigen Projekten und Teamarbeit.
- o Sie empfinden Empathie und verfügen über die Fähigkeit, andere Perspektiven und Meinungen zu verstehen und angemessen zu reagieren.
- o Sie erwerben die Fähigkeit zur konstruktiven Konfliktlösung und zur Vermittlung zwischen verschiedenen Standpunkten.

Persönliche Kompetenz

Die persönliche Kompetenz bezieht sich auf die individuellen Fähigkeiten, Einstellungen sowie Eigenschaften, die es den Studierenden ermöglichen, ihre Ziele zu erreichen, ihre persönliche Entwicklung voranzutreiben und erfolgreich zu agieren.

- Vermittlung von fundierten Sprachkenntnissen und Sozialkompetenzen, die für die persönliche Weiterentwicklung und die zukünftige Arbeitswelt elementar wichtig sind.
- o Förderung der Problemlösungskompetenz und der Fähigkeit, Lösungen fließend auf Englisch zu erklären.

Verwendbarkeit in diesem und in anderen Studiengängen

Keine Verwendbarkeit in anderen Studiengängen.

Zugangs- bzw. empfohlene Voraussetzungen

Die Voraussetzung, um am Modul erfolgreich teilnehmen zu können ist ein sicheres Sprachverständnis der englischen Sprache auf einem B2 Niveau, in Anlehnung an den Gemeinsamen Europäischen Referenzrahmen für Sprachen (GER).

Inhalt

- o Projektgrundlagen
- o Die bebaute Umgebung und die Zersiedlung
- o Nachhaltigkeit
- o Planung

- o Werkstoffe
- o Bau
- o Fallstudie (e.g. Wasserversorgung, Wasserentsorgung, Windenergie)
- o Kommunikationsfähigkeiten (z.B. Präsentationen, das Geben von konstruktivem Feedback)
- o Schreibfertigkeiten (z.B. Emails, wissenschaftliches Schreiben, Textkohäsion und -kohärenz)
- o Studienfertigkeiten (z.B. effiziente Informationsverarbeitung, wissenschaftliches Arbeiten)
- Grammatikthemen (z.B. Zeiten, Konditionalformen, Aktiv- und Passivsätzen)

Lehr- und Lernmethoden

Der Fokus der Lehrmethoden liegt auf der Optimierung der vier Fertigkeiten (Hörverständnis, Sprechen, Lesen und Schreiben). Beispiele der angewendeten Lehrmethoden sind diverse Formen der Gruppen- und Einzelarbeit, Minipräsentationen, Übungen zum intensiven Lesen und Hören, Rollen- und Grammatikspiele, Loci-Methode, Laufdiktate, Übersetzungen, Peer-Feedback, Arbeit mit Lernstationen und verschiedenen Schreibaktivitäten zur Vertiefung des erlernten Stoffes.

Es werden wöchentlich Aufgaben zum Selbststudium gestellt.

Besonderes

In allen Sprachkursen herrscht eine Anwesenheitsplicht von 75% um an der Prüfung teilnehmen zu dürfen.

Empfohlene Literaturliste

Bonamy, David. Technical English 4. Harlow, England: Pearson Education, 2011. Print.

Brieger, Nick, and Alison Pohl. Technical English: Vocabulary and Grammar. Oxford: Summertown, 2002. Print.

Dummett, Paul. Energy English: For the Gas and Electricity Industries. Hampshire: Heinle, Cengage Learning, 2010. Print.

Dunn, Marian, David Howey, and Amanda Ilic. English for Mechanical Engineering in Higher Education Studies Coursebook. Reading: Garnet Education, 2010. Print.

engine: Englisch für Ingenieure. <www.engine-magazin.de> (Darmstadt). Various issues. Print.

Gorse, Christopher, Johnston, David & Martin Pritchard editors. Oxford Dictionary of Construction, Surveying & Civil Engineering. Oxford: Oxford UP, 2012. Print.

Heidenreich, Sharon. English for Planning and Building Professionals. Wiesbaden: Springer, 2023. Print.

Ibbotson, Mark. Cambridge English for Engineering. Cambridge: Cambridge UP, 2008. Print.

Ibbotson, Mark. Professional English in Use. Engineering: Technical English for Professionals. Cambridge: Cambridge UP, 2009. Print.

Markner-Jäger, Brigitte. Technical English: Civil Engineering and Construction. Haan-Gruiten: Verl. Europa-Lehrmittle, 2013. Print.

Murphy, Raymond. English Grammar in Use. Cambridge: Cambridge UP, 2004. Print.

Schäfer, Wolfgang. Construction Milestones: Englisch Für Bau-, Holz- Und Anlagenberufe. Stuttgart: Klett, 2013. Print.

Wagner, Georg, and Maureen Lloyd. Zörner. Technical Grammar and Vocabulary: A Practice Book for Foreign Students. Berlin: Cornelsen, 1998. Print.

Wood, David Muir. Civil Engineering: A Very Short Introduction. Oxford: OUP, 2012. Print.

OMBU-26W INFORMATIK II

Modul Nr.	MBU-26W
Modulverantwortliche/r	Prof. Dr. Peter Ullrich
Kursnummer und Kursname	Informatik II
Lehrende	Prof. Dr. Peter Ullrich
Semester	Sommer
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Wahlfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	PStA
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden erwerben fundierte Kenntnisse und Methoden der Programmierung, exemplarisch am Beispiel der höheren Programmiersprachen C/C++ und werden befähigt, eigenständige Programmcodes zu erstellen.

Kenntnisse

Die Studierenden sollen fundierte Kenntnisse der wichtigsten Methoden aus dem Fachgebiet der Programmierung mittels einer höheren Programmiersprache erwerben.

Fähigkeiten

Die Studierenden sollen die erworbenen Kenntnisse sicher auf Fragestellungen anwenden, Programmcode eigenständig erstellen und programmiertechnische und computergestützte Methoden bei wissenschaftlich-technischen Problemstellungen vorteilhaft einsetzen.

Kompetenzen

Die Studierenden sollen aufgrund ihres Wissens und ihrer erworbenen Fähigkeiten eine interdisziplinäre Schnittstellenkompetenz erlangen, die sie befähigt, eigenständig Methoden aus unterschiedlichen Gebieten des wissenschaftlichen Rechnens vorteilhaft auf technische Problemstellungen in der Praxis anzuwenden.

Verwendbarkeit in diesem und in anderen Studiengängen

Masterarbeit, Mathematik III, Grundlagen und Anwendung der Finite-Elemente-Methode

Zugangs- bzw. empfohlene Voraussetzungen

Grundlegende PC- und EDV-Kenntnisse

Inhalt

- o Datentypen, Zahlenformate, Variablen und Funktionen
- o Operatoren, Blöcke, Gültigkeitsbereiche, Zeiger und Funktionsaufrufe
- o Schleifen, Felder und Arrays
- o Konstrollstrukturen
- o Höhere Datenstrukturen
- o Einführung Finte-Elemente-Methoden
- o Einfache eindimensionale Finite Elemente
- o Variaten des Galerkin-Verfahrens am Beispiel Zugstab
- o FE-Logistik
- o Lineare Gleichungssysteme
- o Iterative lineare Gleichungslöser
- o Krylow-Methoden
- o Verfahren der konjugierten Gradienten
- o Netzgenerierung
- o Einbau der Randbedingungen
- o Graphische Ausgabe
- o Assemblierung der Gesamtsteifigkeitsmatrix
- o Inhomogene Materialverteilung
- o Gauß-Integration
- o Das isoparametrische Elementkonzept
- o Einführung höhere Datenstrukturen und C++
- o Klassen in CC++

o Vererbung

Lehr- und Lernmethoden

seminaristischer Unterricht mit Übungen und Computereinsatz

Empfohlene Literaturliste

Lospinoso J., C++ Crash Course: A Fast-Paced Introduction, Illustrated Edition, No Starch Press, 2019

Gregoire M.: Professional C++, 5th Edition, Wrox, 2021

Will, T.: C++: Das umfassende Handbuch zu modern C++, 2. Auflage, Rheinwerk Computing, 2020

Stroustrup B.: Programming: Principles and Practice Using C++, 2nd E1dition, Addison Wesley, 2014

Kedyk D.: Implementing Useful Algorithms in C++, Independently Published: Bronxville, NY, 2020

Shaffer K.: Data Structures & Algorithm Analysis in C++, 3rd Edition, Dover, 2011

Herold H., Arndt J.: C-Programmierung unter Linux, SuSe Press.

Klima R., Selberherr S.: Programmieren in C, Springer

Nahrstedt H.: C++ f"ur Ingenieure, Vieweg+Teubner

Posoukidis E.: Klassische Mechanik mit C++, Springer

OMBU-27W REGENERATIVE ENERGIEN II

Modul Nr.	MBU-27W
Modulverantwortliche/r	Prof. Dr. Wolfgang Rieger
Kursnummer und Kursname	Regenerative Energien II
Lehrende	Robert Bauer
	Prof. Dr. Wolfgang Rieger
	Prof. Dr. Josef Langenecker
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Wahlfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden erwerben Kenntnisse und Kompetenzen im Bereich der regenerativen Energiesysteme und -versorgung.

Kenntnisse

- o Windkraft und Photovoltaik
- o Bioenergie (Biogas, Biogasanlagen, Methanisierung)
- o Wasserkraft
- o Netzmanagement und Energiespeicher
- o Rechtliche Belange, gesellschaftliche Aspekte und Akzeptanz

Fertigkeiten

- o Bewertung, Planung, Dimensionierung und Entwicklung von Anlagen zur Erzeugung regenerativer Energiesysteme
- o Berechnungen und Analysen

- o Entwicklung von Konzepten zu den o.g. Themenfeldern
- o Verstehen und Anwenden von Bemessungsregeln

Kompetenzen

- o Selbständiges Anwenden und Verständnis aktueller Technologien und Entwicklungen im Bereich der Regenerativen Energiesysteme
- o Mitwirkung bei Planung
- o Bau und Betrieb von Anlagen zur regenerativen Energieversorgung
- o Anwendung von Kenntnissen in der Speichertechnologien
- o Erstellung von Konzepten zum Netzausbau und virtuellen Kraftwerkskonzepten
- o Kritische Bewertung von Anlagen regenerativer Energien
- o Befähigung zur Beurteilung und Bewertung von Anlagen regenerativer Energien

Verwendbarkeit in diesem und in anderen Studiengängen

Ausgewählte Kapitel der Wasserwirtschaft

u.U. zur Anfertigung der Masterarbeit

Zugangs- bzw. empfohlene Voraussetzungen

Regenerative Energien I, Lehrveranstaltungen in Thermodynamik, Wärmeübertragung und Wasserbau

Inhalt

- o Windkraft
- o Photovoltaik
- o Bioenergie:
 - o Biogas
 - o Biogasanlagen
 - o Methanisierung
- o Netzmanagement
- o Energiespeicher

- o Wasserkraft
- o Rechtliche Belange, gesellschaftliche Aspekte und Akzeptanz

Lehr- und Lernmethoden

Seminaristischer Unterricht, Übung, Interaktive Lernmethoden, Exkursion zu einem Forschungsprojekt

Teile des Moduls werden von Lehrbeauftragten durchgeführt.

Besonderes

Exkursionen zu Unternehmen und/oder Forschungseinrichtungen dienen der vertieften Vermittlung von praxisnahem Wissen oder aktuellen Forschungsschwerpunkten

Empfohlene Literaturliste

Erneuerbare-Energien-Gesetz (EEG)

Energiewirtschaftsgesetz (EnWG)

Baugesetzbuch (BauGB)

Bundes-Immissionsschutzgesetz (BImSchG)

diverse Skripte und Unterlagen aus der Lehrveranstaltung

Kaltenschmitt: "Energie aus Biomasse"

Christiane Dieckmann, Werner Edelmann, Martin Kaltschmitt, Jan Liebetrau, Saskia Oldenburg, Marco Ritzkowski, Frank Scholwin, Heike Sträuber und Sören Weinrich: "Biogaserzeugung und -nutzung"

Volker Quaschning: Podcasts zur Energiewende

OMBU-28W GRUNDWASSERSCHUTZ UND WASSERAUFBEREITUNG

MBU-28W
Prof. Dr. Karl-Heinz Dreihäupl
Grundwasserschutz und Wasseraufbereitung
Prof. Dr. Karl-Heinz Dreihäupl
Prof. Dr. Wolfgang Rieger
Winter
1 Semester
jährlich
Wahlfach
Master
4
5
Präsenzzeit: 60 Stunden
Selbststudium: 90 Stunden
Gesamt: 150 Stunden
PStA
5/90
Deutsch

Qualifikationsziele des Moduls

Die Studierenden erwerben in diesem Modul umfassende Kenntnisse und Fertigkeiten in den Bereichen Grundwasserentnahme und Grundwasserneubildung, Grundwasserund Trinkwasseraufbereitung sowie Grundwasser- und Trinkwasserschutz.

Kenntnisse

- o Verstehen der hydrogeologischen Vorgänge des Wassers im Untergrund
- o Verstehen der physikalischen und chemischen Beschaffenheit von Grundwasser
- o Kenntnisse über den Schutz von Grundwasservorkommen und Aufbereitungsverfahren zur Nutzung dieser Vorkommen als Trinkwasser
- o Kenntnisse zum Schutz des Grundwassers und zur Trinkwassergewinnung
- Kenntinsse zur Unterscheidung und Beurteilung hydrogeologischer Gegebenheiten, Eigenschaften verschiedener Grundwasservorkommen und deren Auswirkungen auf die Trinkwassergewinnung

Fertigkeiten

- o Qualifizierte Beurteilung der Grundwasservorkommen und deren Aufbereitung zum Trinkwasser
- o Bewertung von Wasseranalysen und die Zuordnung verschiedener Wässer zu entsprechenden Aufbereitungsverfahren
- o Verstehen, Anwendung und Entwicklung spezieller Verfahren zum Grundwasserschutz und zur Wasseraufbereitung

Kompetenzen

 Selbständige, kreative und verantwortungsvolle Planung und Durchführung von Maßnahmen zum Grundwasserschutz und zur Trinkwassergewinnung und aufbereitung

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. für die Masterarbeit

Zugangs- bzw. empfohlene Voraussetzungen

Chemie, Siedlungswasserwirtschaft, Wasserwirtschaft I und II, Hydromechanik, Wasserbau und Wasserversorgung oder vergleichbare Vorlesungen

Anwesenheitspflicht zu den Präsentationsterminen

Inhalt

- o Chemische und physikalische Grundlagen des Wassers, Kalk-Kohlensäure-Gleichgewicht
- o Geohydrochemische Analysen und deren Auswertung
- o Vorgänge in der unterirdischen Hydrosphäre: Löslichkeiten, Kinetik der Austausch-, Sorptionsprozesse, Redoxprozesse im Grundwasser, Oberflächenladungen
- o Hydraulische Leitfähigkeit der Grundwasserkörper
- o Grundwasserneubildung
- o Grundwasserdynamik
- o Grundwassermodellierung
- o Funktion der Grundwasserüberdeckung, Boden- und Uferinfiltration
- o Anthropogene Veränderungen der Grundwasserbeschaffenheit, Schadstofffrachten, Mobilität Schadstoffe rain out, wash out, Abbaubarkeit Schadstoffe

- o Gefährdungsabschätzung für Schadstofftransport
- o Wassergefährdungsklassen
- o Geohygiene des Grundwassers
- o Trinkwasserschutzgebiete, Heilquellenschutzgebiete
- o Ziele, Methoden und Bausteine der Grundwasseraufbereitung

Lehr- und Lernmethoden

Seminaristischer Unterricht mit studentischen Präsentationen und Ausarbeitungen, eigenständige Bearbeitung der Aufgabenstellung mit individueller Betreuung durch die Professoren

Empfohlene Literaturliste

Vorlesungsunterlagen und Literatur-Auszüge in der Online-Lehrplattform

B. Hölting, W.G. Coldewey, Hydrogeologie, Einführung in die allgemeine und angewandte Hydrogelogie, Spektrum Akademischer Verlag, 2008

H.-J. Voigt, Hydrogeochemie, Eine Einführung in die Beschaffenheitsentwicklung des Grundwassers, Springer, 1990

Mull, Holländer: Grundwasserhydraulik und hydrologie, Springer-Verlag 2002

Maniak: Hydrologie und Wasserwirtschaft, Springer-Verlag 2010

Eckhardt: Hydrologische Modellierung - Ein Einstieg mithilfe von Excel, Springer-Verlag 2014

Grombach, Haberer, Merkl: Handbuch der Wasserversorgungstechnik, Oldenbourg Wissenschaftsverlag 2000

OMBU-29W GESAMTENERGIEEFFIZIENZ VON GEBÄUDEN

Modul Nr.	MBU-29W
Modulverantwortliche/r	Prof. Dr. Peter Ullrich
Kursnummer und Kursname	Gesamtenergieeffizienz in Gebäuden
Lehrende	Markus Killinger
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Wahlfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Gesamtenergieeffizienz eines Gebäudes wird anhand des berechneten oder tatsächlichen Energieverbrauchs bestimmt und spiegelt den typischen Energieverbrauch für Raumheizung, Raumkühlung, Warmwasserbereitung für den häuslichen Gebrauch, Lüftung, eingebaute Beleuchtung und andere gebäudetechnische Systeme wider.

Kenntnisse

Die Studierenden sollen anhand der Europäischen Richtlinie zur Gesamtenergieeffizienz (EPBD) und den nationalen Umsetzungsvorschriften umfassende Kenntnisse zur Gesamtenergieeffizienz von Wohn- und Nichtwohngebäuden erhalten.

Fertigkeiten

Die Studierenden sollen die erworbenen Kenntnisse auf praktische Fragestellungen zuverlässig anwenden und energieoptimierte Gebäudegesamtkonzepte entwickeln und bilanzieren können.

Kompetenzen

Die Studierenden sollen aufgrund ihres Wissens und ihrer Fähigkeiten über vertiefte interdisziplinäre Kompetenzen hinsichtlich der Energieeffizienz von Anlagen zur

Beheizung und Warmwasserbereitung, zur Kühlung und Klimatisierung sowie zur Beleuchtung von Gebäuden unter Beachtung der eingesetzten Hilfsenergien, der Verluste sowie der Eigenschaften der Gebäudehülle verfügen.

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Zugangs- bzw. empfohlene Voraussetzungen

Gebäudetechnik I, Bauphysik I für Umweltingenieure

Inhalt

- o Energieeffiziente Gebäudetechnik und Gebäudehüllen
- o Rechtliche Rahmenbedingungen GEG
- o Energieausweis
- o Energiearten
- o Gebäudezonierung
- o Bilanzierungsverfahren DIN V 18599
- o Nutzungsrandbedingungen und Klimadaten
- o Praktische EDV-Simulationen

Lehr- und Lernmethoden

Seminaristischer Unterricht mit praktischen Übungen und Projektstudium

Das Modul wird von einem Lehrbeauftragten durchgeführt.

Empfohlene Literaturliste

ZUB Systems GmbH: Handbuch ZUB Helena, 2020

Friedrichs L., Wenning M.: DIN V 18599 in der Praxis ? Fragestellungen und Anwendungshilfen zur energetischen Bewertung von Gebäuden, Fraunhofer IRB Verlag, 2014

David R.: Heizen, Kühlen, Belüften & Beleuchten ? Bilanzierungsgrundlagen nach DIN V 18599, Fraunhofer IRB Verlag, 2009

Schoch T.: GEG 2020 und DIN V 18599 ? Nichtwohnbau ? Kompaktdarstellung mit Kommentar und Praxisbeispielen, 3., vollst. überarb. u. erw. Aufl., Bauwerk Beuth Verlag, 2022

Recknagel, Sprenger, Schramek: Taschenbuch für Heizung und Klimatechnik 2021/2022, 80. Aufl., ITM InnoTech Medien, 2020

Europäische Gesamtenergieeffizienz-Richtlinie, Energieeinsparverordnung, DIN V 18599 sowie andere Verordnungen und Normen in der jeweils aktuellen Fassung

OMBU-30W UNTERNEHMENSRECHNUNG UND CONTROLLING

Modul Nr.	MBU-30W
Modulverantwortliche/r	Prof. Dr. Gerd Maurer
Kursnummer und Kursname	Unternehmensrechnung und Controlling
Lehrende	Prof. Dr. Gerd Maurer
Semester	Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Wahlfach
Niveau	Master
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	PStA
Gewichtung der Note	5/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Den Studierenden werden wichtige Kenntnisse und Methoden der Unternehmensrechnung und des Controllings vermittelt.

Kenntnisse

- o Einsatzformen von Bauunternehmen und Arbeitsgemeinschaften
- o Unternehmensrechnung (Finanzbuchhaltung, Kosten-Leistungs-Rechnung)
- o Projektcontrolling, Unternehmenscontrolling

Fertigkeiten

- o Buchen wesentlicher Geschäftsvorfälle
- o Erstellen einer Abschlußbilanz
- o Erstellen einer kurzfristigen Ergebnisrechnung (Bauprojekt und zum Bauende)

Kompetenzen

o Analyse von kaufmännischen Projektdaten/-kennzahlen,

- o Steuerung von Projektergebnissen.
- o Verständnis von Baubilanzen

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. zur Anfertigung der Masterarbeit

Zugangs- bzw. empfohlene Voraussetzungen

keine

Inhalt

- o Unternehmensrechnung:
 - o Rechnungswesen
 - o Steuer-, Handelsbilanz
 - o Bewertung halbfertiger Leistungen
 - o Bilanzkennzahlen, -analyse
 - o SWOT-Analyse
 - o Balance Scorecard
- o Controlling:
 - o Gesamtkonzept Baustellencontrolling
 - o Mindestcontrollling
 - o Steuerungsverfahren
 - o Kaufmännische Abstimmung
 - o Pilotbaustelle
 - o Controllingkultur
 - o EDV-Fallstudie

Lehr- und Lernmethoden

seminaristischer Unterricht, Übungen

Einzelne Bestandteile des Moduls werden von Lehrbeauftragten übernommen.

Empfohlene Literaturliste

Vorlesungsmanuskript

Breunig, Rechnungswesen - Bau, Manuskript; Prof. Dr. Bernd Breunig, Hochschule Karlsruhe, Fakultät Bauingenieurwesen, Auflage 2006

Wirth, Volker, Controlling in der Baupraxis, Werner Verlag 2. Auflage, 2006

Jacob, Dieter: Finanzierung und Bilanzierung in der Bauwirtschaft: Basel II/III - neue Finanzierungsmodelle - IFRS - BilMoG (Leitfaden des Baubetriebs und der Bauwirtschaft), Springer-Verlag

OMBU-31F FORSCHUNGSPROJEKT "ENERGIETECHNIK"

Modul Nr.	MBU-31F
Modulverantwortliche/r	Prof. Dr. Andrea Deininger
Kursnummer und Kursname	Forschungsprojekt "Energietechnik"
Semester	Sommer und Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jedes Semester
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Master
SWS	0
ECTS	10
Workload	Präsenzzeit: 0 Stunden
	Selbststudium: 300 Stunden
	Gesamt: 300 Stunden
Prüfungsarten	Endnotenbildende PStA
Gewichtung der Note	10/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Im Forschungsprojekten sollen die Studierenden ein wissenschaftliches, empirischanalytisches Projekt mit energetischer Ausrichtung an einer Partnerhochschule umsetzen

Kenntnisse:

- o Energietechnik
- o Wärmeschutz
- o Erneuerbare Energien

Fertigkeiten:

- o Benennen und Bewerten relevanter Fragestellungen in der Energietechnik aus Sicht der wissenschaftlichen Forschung.
- o Charakterisierung und Reproduktion von Vorgehensweisen energietechnischer Forschung.

Kompetenzen:

o Erwerb der Methodenkompetenz zum selbstständigen wissenschaftlichen Arbeiten an konkreten praxisnahen Forschungsthemen bzw. komplexen Projekten.

- o Die Studierenden sind in der Lage, bisher gewonnene Kenntnisse anzuwenden, zu verknüpfen, zu dokumentieren und zu präsentieren.
- Die Studierenden sind außerdem in der Lage, ein vorgegebenes Thema einzugrenzen, zu strukturieren, einen geeigneten Lösungsansatz zu suchen, den Lösungsweg methodisch sauber zu beschreiben und das gegebene Problem einer strukturierten Lösung zuzuführen.

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. beim Anfertigen der Masterarbeit, Möglichkeit der Masterarbeit im Rahmen des Auslandsaufenthaltes und u.U.im gleichen Forschungsprojekt

Zugangs- bzw. empfohlene Voraussetzungen

Gebäudetechnik II, Messen - Steuern - Regeln

Inhalt

Forschungsprojekt "Energietechnik" an der Universität Luxemburg

Inhalte und Learnings:

- o Methodik des wissenschaftlichen Arbeitens und der Literaturrecherche
- o Projektorganisation (Termine, Inhalte, Kosten)
- o Formaler Aufbau einer wissenschaftlich-technischen Arbeit
- o Zustandsanalyse
- o Sollkonzeptanalyse
- o Projektbearbeitung
- o Laborversuche
- o Entwicklung von Pilotanlagen
- o Feld- und großtechnische Untersuchungen
- o Wissenschaftliches Arbeiten in und für eine Arbeitsgruppe,
- o Wechselspiel zwischen Gruppenarbeit und Einzelarbeit.
- o Wissenschaftliche Auswertungen
- o Darstellungstechniken
- o Präsentation und Verteidigung der Arbeit

Lehr- und Lernmethoden

Wissenschaftliches Arbeiten in und für eine Arbeitsgruppe, Gruppenarbeit und Einzelarbeit, Präsentation, Abgabe schriftliche Ausarbeitung

Besonderes

Das angebotene Projekt ist entsprechend der fortgeschrittenen Studienphase auf eine konkrete und komplexe Problemlösung ausgerichtet und bietet die Möglichkeit zur querschnittsorientierten und praxisnahen Spezialisierung. Es soll ein Beitrag zu einer aktuellen Forschungstätigkeit an der Universität Luxemburg geleistet werden.

Empfohlene Literaturliste

Cerbe G., Wilhelms G.: Technische Thermodynamik, 17. überarb. Auflage, Hanser, München, 2019

Wilhelms G.: Übungsaufgaben Technische Thermodynamik, 4. aktualis. Auflage, Hanser, München, 2018

Sterner, M., Stadler, I.; ?Energiespeicher - Bedarf, Technologien, Integration?; Springer Verlag Berlin Heidelberg, 2016;

Türk, O.; Stoffliche Nutzung nachwachsender Rohstoffe: Grundlagen - Werkstoffe? Anwendungen; Springer Fachmedien, Wiesbaden, 2014

○MBU-32F FORSCHUNGSPROJEKT "WASSER"

Modul Nr.	MBU-32F
Modulverantwortliche/r	Prof. Dr. Andrea Deininger
Kursnummer und Kursname	Forschungsprojekt Wasser
Semester	Sommer und Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jedes Semester
Art der Lehrveranstaltungen	Wahlfach
Niveau	Master
SWS	0
ECTS	10
Workload	Präsenzzeit: 0 Stunden
	Selbststudium: 300 Stunden
	Gesamt: 300 Stunden
Prüfungsarten	Endnotenbildende PStA
Gewichtung der Note	10/90
Unterrichts-/Lehrsprache	Englisch

Qualifikationsziele des Moduls

Im Forschungsprojekt sollen die Studierenden die Fähigkeit entwickeln, ein wissenschaftliches, empirisch-analytisches Projekt mit wasserwirtschaftlicher Ausrichtung umzusetzen.

Kenntnisse:

- o Abwasserreinigung (mech., biol. und chemisch)
- o Abwasserableitung
- o Regenwasserbehandlung
- o Verfahrenstechnik
- o Gewässerschutz

Fertigkeiten:

- o Benennung und Bewertung aktueller und relevanter Fragestellungen in der Wasserwirtschaft aus Sicht der wissenschaftlichen Forschung.
- o Chrakterisierung und Reproduktion von Vorgehensweisen wasserwirtschaftlicher Forschung.

Kompetenzen:

- o Erwerb der Methodenkompetenz zum selbstständigen wissenschaftlichen Arbeiten an konkreten praxisnahen Forschungsthemen bzw. komplexen Projekten.
- o Die Studierenden sind in der Lage, bisher gewonnene Kenntnisse anzuwenden, zu verknüpfen, zu dokumentieren und zu präsentieren.
- o Die Studierenden sind außerdem in der Lage, ein vorgegebenes Thema einzugrenzen, zu strukturieren, einen geeigneten Lösungsansatz zu suchen, den Lösungsweg methodisch sauber zu beschreiben und das gegebene Problem einer strukturierten Lösung zuzuführen.

Verwendbarkeit in diesem und in anderen Studiengängen

u.U. beim Anfertigen der Masterarbeit, Möglichkeit der Masterarbeit im Rahmen des Auslandsaufenthaltes und u.U.im gleichen Forschungsprojekt

Zugangs- bzw. empfohlene Voraussetzungen

Ausgewählte Kapitel der Wasserwirtschaft, Industrieabwasserreinigung und Toxikologie, Grundwasserschutz und Wasseraufbereitung

Inhalt

Forschungsprojekt "Wasser" an der Universität Budapest

Inhalte und Learnings:

- o Methodik des wissenschaftlichen Arbeitens und der Literaturrecherche
- o Projektorganisation (Termine, Inhalte, Kosten)
- o Formaler Aufbau einer wissenschaftlich-technischen Arbeit
- o Zustandsanalyse
- o Sollkonzeptanalyse
- o Projektbearbeitung
- o Laborversuche
- o Entwicklung von Pilotanlagen
- o Feld- und großtechnische Untersuchungen
- o Wissenschaftliches Arbeiten in und für eine Arbeitsgruppe,
- o Wechselspiel zwischen Gruppenarbeit und Einzelarbeit.

- o Wissenschaftliche Auswertungen
- o Darstellungstechniken
- o Präsentation und Verteidigung der Arbeit

Lehr- und Lernmethoden

Wissenschaftliches Arbeiten in und für eine Arbeitsgruppe, Gruppenarbeit und Einzelarbeit, schriftliche Ausarbeitungen, Präsentation

Besonderes

Das angebotene Projekt ist entsprechend der fortgeschrittenen Studienphase auf eine konkrete und komplexe Problemlösung ausgerichtet und bietet die Möglichkeit zur querschnittsorientierten und praxisnahen Spezialisierung. Es soll ein Beitrag zu einer aktuellen Forschungstätigkeit an der Universität Budapest geleistet werden.

Empfohlene Literaturliste

Wastewater Engineering: Treatment and Resource Recovery by Inc. Metcalf & Eddy, George Tchobanoglous, H. David Stensel and Ryujiro Tsuchihashi (2020)

Biological Wastewater Treatment, Fifth Edition by C. P. Leslie Grady Jr., Glen T. Daigger, Nancy G. Love and Carlos D. M. Filipe (2020)

Günthert, F.W. 2008, Kommunale Kläranlagen: Bemessung, Erweiterung, Betriebsoptimierung und Kosten, expert Verlag

Bever, Stein, Teichmann, 2016, Weitergehende Abwasserreinigung, Oldenbourg Industrieverlag, München.

Imhoff, K., Jardin N., Imhoff K., 2016, Taschenbuch der Stadtentwässerung, Oldenbourg Industrieverlag, München.

OMBU-33 MASTERARBEIT

Modul Nr.	MBU-33
Modulverantwortliche/r	Prof. Dr. Gerd Maurer
Kursnummer und Kursname	Masterarbeit
Semester	Sommer und Winter
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jedes Semester
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Master
SWS	0
ECTS	20
Workload	Präsenzzeit: 0 Stunden
	Selbststudium: 600 Stunden
	Gesamt: 600 Stunden
Prüfungsarten	Masterarbeit
Gewichtung der Note	20/90
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

In der Masterarbeit sollen die Studierenden ihre Fähigkeit nachweisen, die im Studium erworbenen Kenntnisse und Fertigkeiten auf komplexe praxisorientierte Aufgabenstellungen selbstständig anzuwenden und die Aufgaben in ihren fachlichen Einzelheiten und in den fachübergreifenden Zusammenhängen nach wissenschaftlichen und fachpraktischen Gesichtspunkten selbstständig zu bearbeiten sowie die Aufgaben und Ergebnisse in einer angemessenen Form schriftlich vorzulegen.

Bei der dazugehörigen Präsentation soll die Fähigkeit gefördert werden, fachliche Themen geeignet aufzuarbeiten und verständlich zu präsentieren. Die, mit 20-% in die Notengebung eingehende, etwa 30-minütige Masterpräsentation dient der Fest-stellung, ob die Studierenden in der La-ge sind, die wesentlichen Grundlagen, Zu-sam-menhänge und Er-geb--nisse der Masterarbeit münd--lich dar-zu-stellen, selbständig zu be-grün-den und ihre Bedeutung für die Praxis ein-zu-schätzen. Die Verwendung von Prä-sen-ta-tions-hilfs-mitteln ist ausdrücklich erwünscht.

Durch die Masterarbeit soll festgestellt werden, ob die Studierenden die für den Übergang in den Beruf notwendigen gründlichen Fachkenntnisse erworben haben, die Zusammenhänge des Faches überblicken und die Fähigkeit besitzen, Probleme des vertieften Fachgebietes mit wissenschaftlichen Methoden zu bearbeiten sowie wissenschaftliche Erkenntnisse anzuwenden.

Kenntnisse: In dem gewählten Themenbereich sind die Kenntnisse aus dem Studium zu reproduzieren und durch Eigenstudium zu ergänzen.

Fertigkeiten: Die Studierenden sind in der Lage, eine komplexe Fragestellung zu strukturieren und in eine sinnvolle Agenda zu überführen. Zudem können sie sich die Themenstellung unter Verwendung der im Studium erworbenen Kenntnisse sowie Übertragung und Weiterverarbeitung dieser Kenntnisse selbstständig erarbeiten und darstellen. Die Studierenden beherrschen das wissenschaftliche Arbeiten.

Kompetenzen: Die Studierenden bearbeiten kreativ eine technischwissenschaftlichen Fragestellung im interdisziplinären Fachkontext. Sie wenden ingenieurwissenschaftliche Methoden an und dokumentieren Vorgehen und Ergebnisse auf wissenschaftlicher Basis. Die Studierenden verfügen über Schnittstellenkompetenz und können Aufgabenstellungen interdisziplinär bearbeiten.

Verwendbarkeit in diesem und in anderen Studiengängen

Durch die Masterarbeit wird das Erreichen des Studienziels nachgewiesen.

Zugangs- bzw. empfohlene Voraussetzungen

Für die Masterarbeit kann sich anmelden, wer mindestens 30 ECTS-Leistungspunkte erreicht hat. Die Bearbeitungszeit beträgt 6 Monate.

Inhalt

Selbständige Bearbeitung einer ingenieurwissenschaftlichen und anwendungsorientierten Aufgabenstellung aus dem Bau- und Umweltingenieurwesen.

- o Themensuche und -formulierung
- o Unternehmenssuche ggf. Bewerbung zur Bearbeitung eines Abschlussarbeitsprojekts in einem Unternehmen
- o Betreuersuche
- o Erstellen einer anwendungs- und praxisorientierten wissenschaftlichen Arbeit
 - o Anwendung wissenschaftlicher Methoden
 - o Wissenschaftliche Dokumentation
 - o Interdisziplinäres Arbeiten
 - o Schnittstellenkompetenz

Lehr- und Lernmethoden

Die Masterarbeit kann theoretisch, praktisch, konstruktiv oder organisatorisch ausgerichtet sein. Das Thema wird vom Prüfenden festgelegt. Die Ergebnisse sind umfassend und detailliert in schriftlicher und bildlicher Form darzustellen. Dazu gehören insbesondere auch eine Zusammenfassung, eine Gliederung und ein vollständiges Verzeichnis der in der Arbeit verwendeten Literatur.

Eigenständiges Erarbeiten des Themas. Eingrenzung des Themas mit dem Betreuer. Impulsgebung durch den Betreuer.

Empfohlene Literaturliste

Die jeweilige Literatur ergibt sich aus dem gewählten Fachgebiet.

Die Masterarbeit muss ein vollständiges Verzeichnis der benutzten Literatur, der Quellen und Abbildungen enthalten.

Literaturempfehlungen zum wissenschaftlichen Arbeiten:

Yomb, May; Kompaktwissen Wissenschaftliches Arbeiten: Eine Anleitung zu Techniken und Schriftform, 2010, Reclam-Verlag

Ebel, H. F.: Bachelor-, Master- und Doktorarbeit: Anleitungen für den naturwissenschaftlich-technischen Nachwuchs.

4. Aufl. Wiley-VCH Verlag GmbH & Co. KGaA, 2009.

Hohmann, S.: Wissenschaftliches Arbeiten für Naturwissenschaftler, Ingenieure und Mathematiker. Springer Vieweg, 2014.

Leschik, M.: Word für Windows 6.0, Wissenschaftlich Arbeiten, optimal. 2. Aufl. Koschenbroich, bhv-Verlag, 1994.

Standop, E.: Die Form der wissenschaftlichen Arbeit. 14. Aufl., Heidelberg, Wiesbaden: Quelle & Meyer, 1994.

Theisen, M.: Wissenschaftliches Arbeiten: Erfolgreich bei Bachelor- und Masterarbeit. 18. Aufl. München: Vahlen, 2013.

Weissgerber, M.: Schreiben in technischen Berufen: Der Ratgeber für Ingenieure und Techniker: Berichte, Dokumentationen, Präsentationen, Fachartikel, Schulungsunterlagen. Publicis Publishing, 2010.

Werder, L.: Lehrbuch des wissenschaftlichen Schreibens. Berlin, Milow: Schibri, 1993.

