"This site requires JavaScript to work correctly"

Christoph Metzke, M.Sc.

  • Micro- and nanoelectronics
  • Structure and surface analytics
  • FEM-simulations

Academic Staff


Sortierung:
Contribution
  • Christoph Metzke
  • W. Lehermeier

Investigation of Soft Polymer Surfaces using Atomic Force Microscopy and Laser Scanning Microscopy.

In: Applied Research Conference 2018. ARC 2018 – Deggendorf, 10 July 2018

  • Eds.:
  • J. Mottok
  • Werner Bogner
  • M. Reichenberger

BookOnDemand - vabaduse

  • (2018)
Contribution
  • W. Lehermeier
  • Christoph Metzke

Investigation of Local Thermal Properties of Carbon Fiber / Epoxy Composites by using Scanning Thermal Microscopy.

In: Applied Research Conference 2018. ARC 2018 – Deggendorf, 10 July 2018

  • Eds.:
  • J. Mottok
  • Werner Bogner
  • M. Reichenberger

BookOnDemand - vabaduse

  • (2018)
Lecture
  • W. Lehermeier
  • Christoph Metzke

Investigation of Local Thermal Properties of Carbon Fiber / Epoxy Composites by using Scanning Thermal Microscopy.

In: Applied Research Conference (ARC) 2018

Deggendorf

  • 10.07.2018 (2018)
Lecture
  • Christoph Metzke
  • W. Lehermeier

Investigation of Soft Polymer Surfaces using Atomic Force Microscopy and Laser Scanning Microscopy.

In: Applied Research Conference (ARC) 2018

Deggendorf

  • 10.07.2018 (2018)
Lecture
  • Günther Benstetter
  • Christoph Metzke
  • W. Lehermeier

Advances in Electrical and Thermal Characterization of Surfaces and Thin Films. Invited Talk.

In: 4th Ed. Smart Materials and Surfaces - SMS Conference 2018

Venedig, Italien

  • 23.-25.10.2018 (2018)
Lecture
  • Christoph Metzke
  • W. Lehermeier
  • Günther Benstetter
  • Werner Frammelsberger

Evaluation of Topography effects of SThM Measurements on Thin Thermoelectric Films. Poster.

In: 4th Ed. Smart Materials and Surfaces - SMS Conference 2018

Venedig, Italien

  • 23.-25.10.2018 (2018)
Contribution
  • Christoph Metzke
  • Günther Benstetter

Thermische Charakterisierung ultradünner Schichten.

In: Forschungsbericht 2018/2019 der Technischen Hochschule Deggendorf. pg. 138-141

  • Eds.:
  • Technische Hochschule Deggendorf

Deggendorf

  • (2019)
Lecture
  • Christoph Metzke
  • Günther Benstetter
  • Werner Frammelsberger
  • Jonas Weber
  • Fabian Kühnel

Temperature dependent investigation of hexagonal boron nitride films using scanning thermal microscopy. Poster presentation.

In: 6th Nano Today Conference 2019

Nano Today Journal Lisbon, Portugal

  • 16.-20.06.2019 (2019)
Journal article
  • Christoph Metzke
  • Werner Frammelsberger
  • Jonas Weber
  • Fabian Kühnel
  • K. Zhu
  • M. Lanza
  • Günther Benstetter

On the Limits of Scanning Thermal Microscopy of Ultrathin Films.

In: Materials vol. 13 pg. 518

  • (2020)

DOI: 10.3390/ma13030518

Heat transfer processes in micro- and nanoscale devices have become more and more important during the last decades. Scanning thermal microscopy (SThM) is an atomic force microscopy (AFM) based method for analyzing local thermal conductivities of layers with thicknesses in the range of several nm to µm. In this work, we investigate ultrathin films of hexagonal boron nitride (h-BN), copper iodide in zincblende structure (γ-CuI) and some test sample structures fabricated of silicon (Si) and silicon dioxide (SiO2) using SThM. Specifically, we analyze and discuss the influence of the sample topography, the touching angle between probe tip and sample, and the probe tip temperature on the acquired results. In essence, our findings indicate that SThM measurements include artefacts that are not associated with the thermal properties of the film under investigation. We discuss possible ways of influence, as well as the magnitudes involved. Furthermore, we suggest necessary measuring conditions that make qualitative SThM measurements of ultrathin films of h-BN with thicknesses at or below 23 nm possible.
Lecture
  • Fabian Kühnel
  • Christoph Metzke
  • Günther Benstetter

Thermal conductivity measurements of thin films using 3ω method.

In: 7. Tag der Forschung der THD 2020

Deggendorf

  • 23.07.2020 (2020)
Lecture
  • Christoph Metzke
  • Fabian Kühnel
  • Günther Benstetter

Thermal characterization of thin films using FEM simulations.

In: 7. Tag der Forschung der THD 2020

Deggendorf

  • 23.07.2020 (2020)
Lecture
  • Günther Benstetter
  • Christoph Metzke
  • Jonas Weber

Recent Trends in Characterization of Nanoelectronic Materials and Devices with Scanning Probe Microscopy. Invited Talk.

In: NanoScientific Symposium China - Scanning Probe Microscopy (SPM)

Virtual Conference

  • 10.12.2020 (2020)
Journal article
  • Fabian Kühnel
  • Jonas Weber
  • Christoph Metzke
  • Günther Benstetter

Thermoreflectance Imaging neu gedacht. Eine günstige Alternative zur Ermittlung der thermischen Leitfähigkeit.

In: WILEY GIT Labor-Fachzeitschrift

  • (2021)

Die thermische Leitfähigkeit dünner Schichten spielt eine zentrale Rolle bei der Entwicklung neuer mikroelektronischer Bauteile. Kann die entstehende Wärme in solchen Bauteilen nicht richtig abgeführt werden, bilden sich Hotspots, welche zu Bauteilversagen führen können. Das Ermitteln der thermischen Leitfähigkeiten, insbesondere bei dünnen Schichten, ist allerdings mit einigem Aufwand und Kosten verbunden. Im Bereich der Prozessoren- und Grafikkartenentwicklung liefern sich die Hersteller ein erbittertes Rennen, um das leistungsstärkste Produkt auf den Markt zu bringen. Dazu werden immer kleinere Transistoren benötigt. Inzwischen ist der dafür benötigte Fertigungsprozess bei einer Größe von 2 nm [1] angelangt. Mit zunehmender Verkleinerung steigt die Leistungsdichte und somit auch die erzeugte Wärme. Kann diese nicht effektiv abfließen, versagt das Bauteil. Dies ist ein entscheidender Grund dafür, weshalb die Untersuchung der thermischen Leitfähigkeit von dünnen Schichten immer mehr an Bedeutung gewinnt. Zur Untersuchung der thermischen Leitfähigkeit gibt es eine Vielzahl an Messmethoden, wie zum Beispiel die Laser-Flash-Methode, die Micro-Raman Methode, die Scanning Thermal Microscopy, die 3-Omega Methode oder die Thermoreflectance Imaging Methode. So unterschiedlich alle diese Methoden auch sind, eines haben sie doch gemeinsam: Sie sind äußerst komplex und benötigen sehr teures Equipment.
Journal article
  • Christoph Metzke
  • Fabian Kühnel
  • Jonas Weber
  • Günther Benstetter

Scanning Thermal Microscopy of Ultrathin Films: Numerical Studies Regarding Cantilever Displacement, Thermal Contact Areas, Heat Fluxes, and Heat Distribution.

In: Nanomaterials vol. 11 pg. 491

  • (2021)

DOI: 10.3390/nano11020491

New micro- and nanoscale devices require electrically isolating materials with specific thermal properties. One option to characterize these thermal properties is the atomic force microscopy (AFM)-based scanning thermal microscopy (SThM) technique. It enables qualitative mapping of local thermal conductivities of ultrathin films. To fully understand and correctly interpret the results of practical SThM measurements, it is essential to have detailed knowledge about the heat transfer process between the probe and the sample. However, little can be found in the literature so far. Therefore, this work focuses on theoretical SThM studies of ultrathin films with anisotropic thermal properties such as hexagonal boron nitride (h-BN) and compares the results with a bulk silicon (Si) sample. Energy fluxes from the probe to the sample between 0.6 µW and 126.8 µW are found for different cases with a tip radius of approximately 300 nm. A present thermal interface resistance (TIR) between bulk Si and ultrathin h-BN on top can fully suppress a further heat penetration. The time until heat propagation within the sample is stationary is found to be below 1 µs, which may justify higher tip velocities in practical SThM investigations of up to 20 µms−1. It is also demonstrated that there is almost no influence of convection and radiation, whereas a possible TIR between probe and sample must be considered.
Contribution
  • Günther Benstetter
  • Jonas Weber
  • Fabian Kühnel
  • Christoph Metzke

Hochwärmeleitfähige ultradünne Schichten für die Elektronik der Zukunft – Projekt AlhoiS. Thermische und elektrische Charakterisierung dünner Schichten.

In: Forschungsbericht 2020/2021 der Technischen Hochschule Deggendorf. pg. 110-114

Deggendorf

  • (2021)

Journal article
  • Fabian Kühnel
  • Jonas Weber
  • Christoph Metzke
  • Günther Benstetter

Thermo reflectance imaging re-imagined. A low-cost alternative for determining thermal conductivity.

In: Wiley Analytical Science

  • (2021)

The thermal conductivity of thin films plays a central role in the development of new microelectronic components. If the heat generated in such components cannot be properly dissipated, hot spots form which can lead to component failure. However, determining thermal conductivities, especially in thin films, involves some effort and cost. In the field of processor and graphics card development, manufacturers are engaged in a fierce race to bring the most powerful product onto the market. This requires ever smaller transistors. In the meantime, the production process required for this has reached a size of 2 nm [1]. With increasing miniaturisation, the power density increases and thus also the generated heat. If this heat cannot dissipate effectively, the component fails. This is a decisive reason why the investigation of the thermal conductivity of thin films is becoming increasingly important. For the investigation of thermal conductivity there are a variety of measuring methods, such as the laser-flash method, the Micro-Raman method, the Scanning Thermal Microscopy, the 3-Omega method or the thermo-reflectance imaging method. As different as all these methods are, they have one thing in common: they are extremely complex and require very expensive equipment.
Journal article
  • Fabian Kühnel
  • Christoph Metzke
  • Jonas Weber
  • J. Schätz
  • G. Duesberg
  • Günther Benstetter

Investigation of Heater Structures for Thermal Conductivity Measurements of SiO2 and Al2O3 Thin Films Using the 3-Omega Method.

In: Nanomaterials vol. 12

  • 04.06.2022 (2022)

DOI: 10.3390/nano12111928

A well-known method for measuring thermal conductivity is the 3-Omega (3ω) method. A prerequisite for it is the deposition of a metal heater on top of the sample surface. The known design rules for the heater geometry, however, are not yet sufficient. In this work, heaters with different lengths and widths within the known restrictions were investigated. The measurements were carried out on SiO2 thin films with different film thicknesses as a reference. There was a significant difference between theoretical deposited heater width and real heater width, which could lead to errors of up to 50% for the determined thermal conductivity. Heaters with lengths between 11 and 13 mm and widths of 6.5 µm or more proved to deliver the most trustworthy results. To verify the performance of these newfound heaters, additional investigations on Al2O3 thin films were carried out, proving our conclusions to be correct and delivering thermal conductivity values of 0.81 Wm-1 K-1 and 0.93 Wm-1 K-1 for unannealed and annealed samples, respectively. Furthermore, the effect of annealing on Al2O3 was studied, revealing a significant shrinking in film thickness of approximately 11% and an increase in thermal conductivity of 15%. The presented results on well-defined geometries will help to produce optimized heater structures for the 3ω method.
Contribution
  • L. Metzke
  • Christoph Metzke

Study on the Influence of Different Surface Coatings on the Infrared Emissivity of Metal Surfaces.

In: Proceedings of the Applied Research Conference (ARC) 2022. (Konferenz im Forschungsmaster - Master of Applied Research, MAPRby) pg. 155-159

  • (2022)
Lecture
  • Jonas Weber
  • Günther Benstetter
  • Fabian Kühnel
  • Christoph Metzke
  • M. Lanza
  • D. Liu

Advances in Combined Mechanical and Electrical SPM Characterization of Thin Films. Poster presentation.

In: Nanobrücken 2022: Nanomechanical Testing Conference

Charles University Prague Prague, Czech Republic

  • 08.-10.06.2022 (2022)
Journal article
  • Jonas Weber
  • Y. Yuan
  • S. Pazos
  • Fabian Kühnel
  • Christoph Metzke
  • J. Schätz
  • Werner Frammelsberger
  • Günther Benstetter
  • M. Lanza

Current-Limited Conductive Atomic Force Microscopy.

In: ACS Applied Materials & Interfaces

  • 21.11.2023 (2023)

DOI: 10.1021/acsami.3c10262

Conductive atomic force microscopy (CAFM) has become the preferred tool of many companies and academics to analyze the electronic properties of materials and devices at the nanoscale. This technique scans the surface of a sample using an ultrasharp conductive nanoprobe so that the contact area between them is very small (<100 nm2) and it can measure the properties of the sample with a very high lateral resolution. However, measuring relatively low currents (∼1 nA) in such small areas produces high current densities (∼1000 A/cm2), which almost always results in fast nanoprobe degradation. That is not only expensive but also endangers the reliability of the data collected because detecting which data sets are affected by tip degradation can be complex. Here, we show an inexpensive long-sought solution for this problem by using a current limitation system. We test its performance by measuring the tunneling current across a reference ultrathin dielectric when applying ramped voltage stresses at hundreds of randomly selected locations of its surface, and we conclude that the use of a current limitation system increases the lifetime of the tips by a factor of ∼50. Our work contributes to significantly enhance the reliability of one of the most important characterization techniques in the field of nanoelectronics.
Journal article
  • Jonas Weber
  • Y. Yuan
  • Fabian Kühnel
  • Christoph Metzke
  • J. Schätz
  • Werner Frammelsberger
  • Günther Benstetter
  • M. Lanza

Solid Platinum Nanoprobes for Highly Reliable Conductive Atomic Force Microscopy.

In: ACS Applied Materials & Interfaces vol. 15 pg. 21602-21608

  • 21.04.2023 (2023)

DOI: 10.1021/acsami.3c01102

Conductive atomic force microscopy (CAFM) is a powerful technique to investigate electrical and mechanical properties of materials and devices at the nanoscale. However, its main challenge is the reliability of the probe tips and their interaction with the samples. The most common probe tips used in CAFM studies are made of Si coated with a thin (∼20 nm) film of Pt or Pt-rich alloys (such as Pt/Ir), but this can degrade fast due to high current densities (>102A/cm2) and mechanical frictions. Si tips coated with doped diamond and solid doped diamond tips are more durable, but they are significantly more expensive and their high stiffness often damages the surface of most samples. One growing alternative is to use solid Pt tips, which have an intermediate price and are expected to be more durable than metal-coated silicon tips. However, a thorough characterization of the performance of solid Pt probes for CAFM research has never been reported. In this article, we characterize the performance of solid Pt probes for nanoelectronics research by performing various types of experiments and compare them to Pt/Ir-coated Si probes. Our results indicate that solid Pt probes exhibit a lateral resolution that is very similar to that of Pt/Ir-coated Si probes but with the big advantage of a much longer lifetime. Moreover, the probe-to-probe deviation of the electrical data collected is small. The use of solid Pt probes can help researchers to enhance the reliability of their CAFM experiments.
Journal article
  • J. Schätz
  • N. Nayi
  • Jonas Weber
  • Christoph Metzke
  • S. Lukas
  • J. Walter
  • et al.

Button shear testing for adhesion measurements of 2D materials.

In: Nature Communications vol. 15 pg. 2430

  • 18.03.2024 (2024)

DOI: 10.1038/s41467-024-46136-8

Two-dimensional (2D) materials are considered for numerous applications in microelectronics, although several challenges remain when integrating them into functional devices. Weak adhesion is one of them, caused by their chemical inertness. Quantifying the adhesion of 2D materials on three-dimensional surfaces is, therefore, an essential step toward reliable 2D device integration. To this end, button shear testing is proposed and demonstrated as a method for evaluating the adhesion of 2D materials with the examples of graphene, hexagonal boron nitride (hBN), molybdenum disulfide, and tungsten diselenide on silicon dioxide and silicon nitride substrates. We propose a fabrication process flow for polymer buttons on the 2D materials and establish suitable button dimensions and testing shear speeds. We show with our quantitative data that low substrate roughness and oxygen plasma treatments on the substrates before 2D material transfer result in higher shear strengths. Thermal annealing increases the adhesion of hBN on silicon dioxide and correlates with the thermal interface resistance between these materials. This establishes button shear testing as a reliable and repeatable method for quantifying the adhesion of 2D materials.
Thesis
  • Christoph Metzke

Entwicklung und Optimierung von Methoden zur thermischen Charakterisierung von Dünnschichten und Bulk-Materialien.

Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg

  • 2024 (2024)

DOI: 10.24405/15301

In den letzten Jahrzehnten vollzog sich in der Mikro- und Nanoelektronik eine enorme Verringerung der Strukturgrößen bis hin zu aktuell wenigen Nanometern. Damit einhergehend spielt die Ableitung der Wärme von kritischen Strukturen eine immer wichtigere Rolle. Es werden daher thermisch gut leitfähige, aber elektrisch isolierende Dünnschichten als Dielektrika benötigt. Gleichzeitig stoßen bestehende Messmethoden zur thermischen Charakterisierung bei kleinen Schichtdicken an ihre Grenzen. Ziel dieser Arbeit ist daher die Verbesserung vorhandener Methoden und die Entwicklung einer neuen Methode zur thermischen Charakterisierung. Im Verlauf der Arbeit können dadurch Dünnschichten aus Siliziumdioxid (SiO₂), Siliziumnitrid (Si₃N₄), Bornitrid (BN) und Aluminiumnitrid (AlN) sowie einige Bulk-Samples aus Oxiden, Kunststoffen und Materialien aus der Natur thermisch charakterisiert werden. Ein Großteil der Arbeit fokussiert sich dabei auf die Scanning Thermal Microscopy (SThM), welche im Rastersondenmikroskop (AFM für engl. Atomic Force Microscope) angewandt wird. Durch eine detaillierte Analyse von Artefakten und die Herleitung geeigneter Messparameter kann SThM in vielen Submodi zuverlässig eingesetzt werden. Ausführliche Simulationen mittels Finite-Elemente-Methode (FEM) tragen zum Verständnis der Methode bei. Mit der Widerstandsmethode in Kombination mit FEM-Simulationen wird zudem eine neuartige Vorgehensweise präsentiert, welche relativ schnelle thermische Messungen an Dünnschichten mit geringem Budget ermöglicht. Vergleichsmessungen werden mittels der etablierten 3-Omega-Methode präsentiert, wodurch die Ergebnisse der anderen Methoden verifiziert werden können. Zusammenfassend leistet diese Arbeit einen Beitrag zur thermischen Charakterisierung von dünnen Schichten und Bulk-Materialien, indem vorhandene Methoden sukzessive verbessert werden, eine neue Methode entwickelt wird und vielversprechende Dünnschichten thermisch charakterisiert werden. During the last decades, micro- and nanoelectronics have seen an enormous miniaturization of process sizes, currently down to just a few nanometres. As a result, the heat transfer away from critical structures is playing an increasingly important role. Consequently, thermally well conductive but electrically insulating thin films are needed as dielectrics. At the same time, existing measurement methods for thermal characterization are reaching their limits at small film thicknesses. Therefore, the aim of this work is the improvement of existing methods and the development of a new method for thermal characterization. Within this work, thin films of silicon dioxide (SiO₂), silicon nitride (Si₃N₄), boron nitride (BN) and aluminium nitride (AlN) as well as some bulk samples of oxides, plastics, and natural samples are thermally character-ized. One main part of this work focuses on Scanning Thermal Microscopy (SThM), which is applied in the Atomic Force Microscope (AFM). Through detailed analysis of artifacts and derivation of appropriate measurement parameters, SThM can be applied reliably in many submodes. Extensive simulations using the Finite Element Method (FEM) contribute to the understanding of the method. The “Widerstandsmethode” combined with FEM simulations is also presented as a novel approach that allows relatively fast thermal measurements on thin films with a low budget. Comparative measurements are presented using the established 3-Omega Method, allowing verification of the results of the other methods. In summary, this work contributes to the thermal characterization of thin films and bulk materials by succes-sively improving existing methods, developing a new method, and thermally characterizing promising thin films.