DIT Research

Pioneering & Vibrant

Institute for Quality and Material analysis.

Our core competencies lie in the implementation of research and development projects in the fields of analytics and quality assurance (QA) with a focus on: New materials, electronic devices, thin and ultra-thin films, surfaces, and micro- and nanostructures.



Research Areas

 

Thermal characterisation of thin films

 

  • Measurement methods: 3-omega method, scanning thermal microscopy (SThM), infrared camera
  • Measurement of thermal conductivities and thermal contact resistances
  • Qualitative comparison of directly adjacent layers with regard to thermal conductivity
  • Materials: SiO2, BN, AlN, MgO etc.


 

 

Thermal simulations

 

  • Programmes: COMSOL Multiphysics for FEM simulations, MATLAB
  • Simulation of heat propagation in (ultra)thin films
  • Further development of thermal measurement methods
  • Simulation of microelectronic structures

 


 

 

Electrical characterisation of thin films

 

  • Measurement methods: Conductive Atomic Force Microscopy (C-AFM), Peakforce TUNA, Scanning Capacitance Microscopy (SCM) and Kelvin Probe Force Microscopy (KPFM), Van der Pauw method
  • Spatially resolved determination of qualitative electrical conductivity by current maps
  • I-V spectroscopy, e.g. to determine the breakdown voltage
  • Measurement of surface potentials and local dopant variations


 

 

Structural and topographical investigations

 

  • Measurement methods: AFM, SEM, LSM
  • Investigation of thin layers with regard to material composition, impurities, surface structures, roughness, etc.
  • Creation of 3-dimensional surface profiles
  • Measurement of micro- and nanostructures


 

 

Reliability analyses

 

  • Measurement methods: Keysight B1500 Semiconductor Parameter Analyser, Cascade 12k Summit Prober, Süss PA300 Probestation 
  • TDDB tests: Constant Voltage Stress (CVS), Ramped Voltage Stress (RVS), Constant Current Stress (CCS) and Temperature Stress from -50 to 200 °C
  • Extrapolation of the lifetime of electronic components based on various physical models
  • Wafer level testing up to 300 mm


Lab Equipment

 

Scanning Probe Microscopy (AFM)

  • Topography
  • Determination of electrical conductivities (C-AFM), surface potentials (KPFM) and mechanical properties (QNM)
  • Dopant distributions or profiles (SCM)
  • Thermal characterisation (SThM)

Scanning Electron Microscopy (SEM) & STEM

  • Microstructure and structure analysis (EBSD)
  • Energy and wavelength dispersive X-ray analysis (EDX, WDX)
  • Micro X-ray fluorescence (μ-XRF)

3-Omega Methodology

  • Macroscopic thermal characterisation

Infrared camera

  • Thermal analysis of small structures (µm resolution)
  • Thermal characterisation of thin films

Laser scanning microscopy

  • Topography examinations

Wafer prober

  • Reliability analysis on wafer level
  • Lifetime extrapolation of electronic components
  • Electrical characterisation

Van der Pauw methodology

  • Analysis of the electrical surface resistance
  • Hall Coefficient Analysis

 

 


Publications

You can find all publications of the IQMA in our publications database.

Below you will find a selection of relevant journal articles, book contributions and patents of the working group.

 

Metzke, C., Kühnel, F., Weber, J., & Benstetter, G. (2021). Scanning Thermal Microscopy of Ultrathin Films: Numerical Studies Regarding Cantilever Displacement, Thermal Contact Areas, Heat Fluxes, and Heat Distribution. Nanomaterials11(2), 491.
https://doi.org/10.3390/nano11020491

 

Ni, W., Niu, C., Zhang, Y., Liu, L., Cui, Y., Fan, H., ... & Lei, G. (2021). Modeling W fuzz growth over polycrystalline W due to He ion irradiations at an elevated temperature. Journal of Nuclear Materials550, 152917.
https://doi.org/10.1016/j.jnucmat.2021.152917

 

Wen, C., Banshchikov, A. G., Illarionov, Y. Y., Frammelsberger, W., Knobloch, T., Hui, F., ... & Lanza, M. (2020). Dielectric Properties of Ultrathin CaF2 Ionic Crystals. Advanced Materials32(34), 2002525.
https://doi.org/10.1002/adma.202002525

 

Fan, H., Zhang, Y., Liu, D., Niu, C., Liu, L., Ni, W., ... & Lei, G. (2020). Tensile stress-driven cracking of W fuzz over W crystal under fusion-relevant He ion irradiations. Nuclear Fusion60(4), 046011.
https://doi.org/10.1088/1741-4326/ab71bb

 

Metzke, C., Frammelsberger, W., Weber, J., Kühnel, F., Zhu, K., Lanza, M., & Benstetter, G. (2020). On the limits of scanning thermal microscopy of ultrathin films. Materials13(3), 518.
https://doi.org/10.3390/ma13030518

 

Wen, C., Jing, X., Hitzel, F. F., Pan, C., Benstetter, G., & Lanza, M. (2019). In situ observation of current generation in ZnO nanowire based nanogenerators using a CAFM integrated into an SEM. ACS applied materials & interfaces11(17), 15183-15188.
https://doi.org/10.1021/acsami.9b00447

 

Bi, Z., Liu, D., Zhang, Y., Liu, L., Xia, Y., Hong, Y., ... & Yan, L. (2019). The evolution of He nanobubbles in tungsten under fusion-relevant He ion irradiation conditions. Nuclear Fusion59(8), 086025.
https://doi.org/10.1088/1741-4326/ab2472

 

Jiang, L., Weber, J., Puglisi, F. M., Pavan, P., Larcher, L., Frammelsberger, W., ... & Lanza, M. (2019). Understanding current instabilities in conductive atomic force microscopy. Materials12(3), 459.
https://doi.org/10.3390/ma12030459

 

Chen, S., Jiang, L., Buckwell, M., Jing, X., Ji, Y., Grustan‐Gutierrez, E., ... & Lanza, M. (2018). On the limits of scalpel AFM for the 3D electrical characterization of nanomaterials. Advanced Functional Materials28(52), 1802266.
https://doi.org/10.1002/adfm.201802266

 

Yang, C., Souchay, D., Kneiß, M., Bogner, M., Wei, H. M., Lorenz, M., ... & Grundmann, M. (2017). Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Nature communications8(1), 1-7.
https://doi.org/10.1038/ncomms16076

 

Jing, X., Panholzer, E., Song, X., Grustan-Gutierrez, E., Hui, F., Shi, Y., ... & Lanza, M. (2016). Fabrication of scalable and ultra low power photodetectors with high light/dark current ratios using polycrystalline monolayer MoS2 sheets. Nano Energy30, 494-502.
https://doi.org/10.1016/j.nanoen.2016.10.032

 

Fan, H., You, Y., Ni, W., Yang, Q., Liu, L., Benstetter, G., ... & Liu, C. (2016). Surface degeneration of W crystal irradiated with low-energy hydrogen ions. Scientific reports6(1), 1-9.
https://doi.org/10.1038/srep23738

 

Liu, L., Liu, D., Hong, Y., Fan, H., Ni, W., Yang, Q., ... & Li, S. (2016). High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions. Journal of Nuclear Materials471, 1-7.
https://doi.org/10.1016/j.jnucmat.2016.01.001

 

Hamann, L., Benstetter, G., Hofer, A., Mattheis, J., Haas, M., & Zapf-Gottwick, R. (2015). Use of Coated-Metal Particles in Rear Busbar Pastes to Reduce Silver Consumption. IEEE Journal of Photovoltaics5(2), 534-537.
https://doi.org/10.1109/JPHOTOV.2014.2388080

 

Yang, Q., You, Y. W., Liu, L., Fan, H., Ni, W., Liu, D., ... & Wang, Y. (2015). Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation. Scientific reports5(1), 1-9.
https://doi.org/10.1038/srep10959

 

Berthold, T., Benstetter, G., Frammelsberger, W., Rodríguez, R., & Nafría, M. (2015). Nanoscale characterization of CH3-terminated Self-Assembled Monolayer on copper by advanced scanning probe microscopy techniques. Applied Surface Science356, 921-926.
https://doi.org/10.1016/j.apsusc.2015.08.182

 

Yang, Q., Fan, H., Ni, W., Liu, L., Berthold, T., Benstetter, G., ... & Wang, Y. (2015). Observation of interstitial loops in He+ irradiated W by conductive atomic force microscopy. Acta Materialia92, 178-188.
https://doi.org/10.1016/j.actamat.2015.04.004

 

Iglesias, V., Lanza, M., Zhang, K., Bayerl, A., Porti, M., Nafría, M., ... & Bersuker, G. (2011). Degradation of polycrystalline HfO2-based gate dielectrics under nanoscale electrical stress. Applied physics letters99(10), 103510.
https://doi.org/10.1063/1.3637633

 

Benstetter, G., Biberger, R., & Liu, D. (2009). A review of advanced scanning probe microscope analysis of functional films and semiconductor devices. Thin Solid Films517(17), 5100-5105.
https://doi.org/10.1016/j.tsf.2009.03.176 

 

G. Benstetter, P. Breitschopf, B. Knoll - US Patent 7,788,732, 2010                          

 

Frammelsberger, W., Benstetter, G., Kiely, J., & Stamp, R. (2007). C-AFM-based thickness determination of thin and ultra-thin SiO2 films by use of different conductive-coated probe tips. Applied Surface Science253(7), 3615-3626.
https://doi.org/10.1016/j.apsusc.2006.07.070

 

Frammelsberger, W., Benstetter, G., Kiely, J., & Stamp, R. (2006). Thickness determination of thin and ultra-thin SiO2 films by C-AFM IV-spectroscopy. Applied Surface Science252(6), 2375-2388.
https://doi.org/10.1016/j.apsusc.2005.04.010

 

Lanza, M.,  (Ed.). (2017). Conductive Atomic Force Microscopy: Applications in Nanomaterials. John Wiley & Sons
ISBN: 978-3-527-34091-0

 

Projects

Current Projects:

Finished Projects:

Current Student Projects

We regularly offer exciting topics in the areas of electrical and thermal material characterisation, as well as analytics and reliability topics for modern electronic components. Interested students from the fields of applied computer science, mechatronics, electrical engineering, media technology and technical physics can work on these topics in the form of bachelor's theses and master's theses, possibly also with industry participation, Master of Applied Research topics and SHK positions. For detailed information, please see the following PDF.


Contact & Directions

 

The following professors and (research) assistants work at the IQMA. For enquiries, please contact Prof Benstetter.


Buildings E and L at the campus in Deggendorf.

You can find the offices of the staff members under the respective staff link.

Laboratories: