"This site requires JavaScript to work correctly"

Sebastian Wilhelm, M.Sc.

Applied Research in Engineering Sciences (Applied Computer Science)

Wissenschaftlicher Mitarbeiter

Grafenau

08552/975620-25


Sortierung:
Beitrag in Sammelwerk/Tagungsband
  • Sebastian Wilhelm
  • Dietmar Jakob

Digital support for managing Organized Neighborhood Assistance.

  • In:
  • M. Reichenberger
  • J. Mottok

pg. 531-535

(2019)

Beitrag in Sammelwerk/Tagungsband
  • Sebastian Wilhelm
  • A. Gerl

Policy-based Authentication and Authorization based on the Layered Privacy Language.

  • In:
  • D. Nicklas
  • A. Thor
  • N. Ritter
  • M. Klettke
  • A. Heuer
  • H. Meyer

pg. 245-255

DOI: 10.18420/btw2019-ws-25

(2019)

Beitrag in Sammelwerk/Tagungsband
  • Sebastian Wilhelm
  • Dietmar Jakob
  • Melanie Dietmeier

Development of a senior-friendly training concept for imparting media literacy.

  • In:
  • K. David
  • M. Lange
  • G. Stumme
  • K. Geihs

Bonn pg. 699-710

DOI: 10.18420/inf2019_83

(2019)

Beitrag in Sammelwerk/Tagungsband
  • Sebastian Wilhelm
  • Dietmar Jakob
  • Diane Ahrens

Human Presence Detection by monitoring the indoor CO2 concentration.

pg. 199-203

DOI: 10.1145/3404983.3409991

(2020)

Beitrag in Sammelwerk/Tagungsband
  • Dietmar Jakob
  • Sebastian Wilhelm
  • A. Gerl

Data Privacy Management (DPM) - A Private Household Smart Metering Use Case.

  • In:
  • B. Preim
  • A. Nürnberger
  • C. Hansen

DOI: 10.18420/muc2020-ws119-003

(2020)

Beitrag in Sammelwerk/Tagungsband
  • Dietmar Jakob
  • Sebastian Wilhelm

Amazon Echo: A Benchmarking Model Review.

(2020)

Beitrag in Sammelwerk/Tagungsband
  • Sebastian Wilhelm
  • Dietmar Jakob
  • Jakob Kasbauer
  • Melanie Dietmeier
  • A. Gerl
  • Benedikt Elser
  • Diane Ahrens

Organizational, Technical, Ethical and Legal Requirements of Capturing Household Electricity Data for Use as an AAL System.

Singapore: Springer International Publishing

DOI: 10.1007/978-981-15-5856-6_38

(2020)

Monographie
  • S. Sczogiel
  • A. Busch
  • A. Göller
  • A. Gabber
  • B. Williger
  • S. Schmitt-Rüth
  • Diane Ahrens
  • Dietmar Jakob
  • Sebastian Wilhelm

Digital fit im Alter. Handlungsempfehlung für Gemeinden zu Bildungsangeboten für Senioren (Hg.: Fraunhofer-Institut für Integrierte Schaltungen [IIS]; Technische Hochschule Deggendorf [THD]).

(2020)

Vortrag
  • Sebastian Wilhelm

Activity Monitoring reusing Home Infrastructure Data.

04.06.2020.

(2020)

Vortrag
  • Dietmar Jakob
  • Sebastian Wilhelm

Prozessablauf von automatisierten Datenerhebungen in privaten Haushalten – Erfahrungsbericht.

  • Print Media Academy.

Heidelberg (online) 20.10.2020.

(2020)

Vortrag
  • Sebastian Wilhelm

Activity Monitoring reusing Home Infrastructure Data.

Online 18.11.2020.

(2020)

Beitrag in Sammelwerk/Tagungsband
  • Sebastian Wilhelm

Activity-monitoring in Private Households for Emergency Detection: A Survey of Common Methods and Existing Disaggregable Data Sources.

SCITEPRESS - Science and Technology Publications pg. 263-272

DOI: 10.5220/0010180002630272

(2021)

Beitrag in Sammelwerk/Tagungsband
  • Dietmar Jakob
  • Sebastian Wilhelm
  • A. Gerl
  • Diane Ahrens

A Quantitative Study on Awareness, Usage and Reservations of Voice Control Interfaces by Elderly People.

(2021)

Beitrag in Sammelwerk/Tagungsband
  • Sebastian Wilhelm

Exploiting Home Infrastructure Data for the Good: Emergency Detection by Reusing Existing Data Sources.

  • In:
  • T. Ahram
  • R. Taiar
  • F. Groff

Cham: Springer International Publishing vol. 1378 pg. 51-58

DOI: 10.1007/978-3-030-74009-2_7

(2021)

Zeitschriftenartikel
  • Sebastian Wilhelm
  • Jakob Kasbauer

Exploiting Smart Meter Power Consumption Measurements for Human Activity Recognition (HAR) with a Motif-Detection-Based Non-Intrusive Load Monitoring (NILM) Approach.

In: Sensors (vol. 21) , pg. 8036

(2021)

DOI: 10.3390/s21238036

Numerous approaches exist for disaggregating power consumption data, referred to as non-intrusive load monitoring (NILM). Whereas NILM is primarily used for energy monitoring, we intend to disaggregate a household’s power consumption to detect human activity in the residence. Therefore, this paper presents a novel approach for NILM, which uses pattern recognition on the raw power waveform of the smart meter measurements to recognize individual household appliance actions. The presented NILM approach is capable of (near) real-time appliance action detection in a streaming setting, using edge computing. It is unique in our approach that we quantify the disaggregating uncertainty using continuous pattern correlation instead of binary device activity states. Further, we outline using the disaggregated appliance activity data for human activity recognition (HAR). To evaluate our approach, we use a dataset collected from actual households. We show that the developed NILM approach works, and the disaggregation quality depends on the pattern selection and the appliance type. In summary, we demonstrate that it is possible to detect human activity within the residence using a motif-detection-based NILM approach applied to smart meter measurements.
Beitrag in Sammelwerk/Tagungsband
  • Sebastian Wilhelm
  • Dietmar Jakob
  • Jakob Kasbauer
  • Diane Ahrens

GeLaP: German Labeled Dataset for Power Consumption.

  • In:
  • Nilanjan Dey
  • Amit Joshi
  • Simon Sherratt
  • Xin-She Yang

Singapore: Springer Singapore vol. 235 pg. 21-33

DOI: 10.1007/978-981-16-2377-6_5

(2022)

Beitrag in Sammelwerk/Tagungsband
  • Dietmar Jakob
  • Sebastian Wilhelm

Voice Controlled Devices: Awareness, Usage and Reservations of Young Adults.

(2022)

Beitrag in Sammelwerk/Tagungsband
  • Sebastian Wilhelm
  • Dietmar Jakob

Evaluating the Efficiency and Sustainability of a Training Concept for Imparting Media Literacy to the Elderly.

(2022)

Beitrag in Sammelwerk/Tagungsband
  • Sebastian Wilhelm
  • Dietmar Jakob
  • A. Gerl
  • S. Schiegg

Die Vision eines Personal Information Management-System (PIMS) durch automatisierte Datenschutzselbstauskunft.

  • In:
  • G. Hornung
  • R. Neuburger
  • M. Friedewald
  • F. Bieker
  • A. Roßnagel

Nomos Verlagsgesellschaft mbH & Co. KG pg. 373-398

DOI: 10.5771/9783748938743-373

(2023)

Beitrag in Sammelwerk/Tagungsband
  • Domenic Sommer
  • Sebastian Wilhelm
  • Diane Ahrens
  • Florian Wahl

Implementing an Intersectoral Telemedicine Network in Rural Areas: Evaluation from the Point of View of Telemedicine Users.

pg. 15-27

DOI: 10.5220/0011755500003476

(2023)

Beitrag in Sammelwerk/Tagungsband
  • Domenic Sommer
  • Tobias Greiler
  • Stefan Fischer
  • Sebastian Wilhelm
  • Lisa-Marie Hanninger
  • Florian Wahl

Investigating Use Requirements. A Participant Observation Study to Define the Information Needs at a Hospital Reception.

  • In:
  • G. Salvendy
  • C. Stephanidis
  • S. Ntoa
  • M. Antona
  • (Short Paper).

Springer Nature Switzerland AG pg. 1-10

DOI: 10.1007/978-3-031-35992-7_23

(2023)

Beitrag in Sammelwerk/Tagungsband
  • Sebastian Wilhelm
  • Jakob Folz
  • Florian Wahl

Open Personal Data: Anonymisierung im Spannungsfeld zwischen Informationsgehalt und Robustheit.

  • In:
  • M. Friedewald
  • M. Karaboga

Fraunhofer-Institut für System- und Innovationsforschung ISI pg. 36

(2023)

Zeitschriftenartikel
  • Sebastian Wilhelm
  • Jakob Kasbauer
  • Dietmar Jakob
  • Benedikt Elser
  • Diane Ahrens

Exploiting Smart Meter Water Consumption Measurements for Human Activity Event Recognition.

In: Journal of Sensor and Actuator Networks (Special Issue Smart Cities and Homes: Current Status and Future Possibilities) (vol. 12)

(2023)

DOI: 10.3390/jsan12030046

Human activity event recognition (HAER) within a residence is a topic of significant interest in the field of ambient assisted living (AAL). Commonly, various sensors are installed within a residence to enable the monitoring of people. This work presents a new approach for HAER within a residence by (re-)using measurements from commercial smart water meters. Our approach is based on the assumption that changes in water flow within a residence, specifically the transition from no flow to flow above a certain threshold, indicate human activity. Using a separate, labeled evaluation data set from three households that was collected under controlled/laboratory-like conditions, we assess the performance of our HAER method. Our results showed that the approach has a high precision (0.86) and recall (1.00). Within this work, we further recorded a new open data set of water consumption data in 17 German households with a median sample rate of 0.083̲ Hz to demonstrate that water flow data are sufficient to detect activity events within a regular daily routine. Overall, this article demonstrates that smart water meter data can be effectively used for HAER within a residence.
Beitrag in Sammelwerk/Tagungsband
  • Dietmar Jakob
  • Sebastian Wilhelm
  • Armin Gerl
  • Florian Wahl
  • Diane Ahrens

Voice Controlled Devices: A Comparative Study of Awareness, Ownership, Usage, and Reservations Between Young and Older Adults.

  • In:
  • J. Zhou
  • Q. Gao

Cham: Springer Nature Switzerland vol. 14042 pg. 348-365

DOI: 10.1007/978-3-031-34866-2_25

(2023)

Vortrag
  • Norbert Lichtenauer
  • Sebastian Wilhelm
  • Florian Wahl

EAsyAnon – Empfehlungs- und Auditsystem zur Anonymisierung.

Bad Kötzting 16.06.2023.

(2023)

Vortrag
  • Norbert Lichtenauer
  • Sebastian Wilhelm

Anonymization of personal health Data is open data: A systematic analysis of enabling factors and barriers in the EAsyAnon Project.

Pfarrkirchen 09.-11.11.2023.

(2023)

Bericht/Report
  • Jakob Folz
  • Robert Aufschläger
  • Manjitha Vidanalage
  • E. März
  • J. Guggumos
  • Md Moin Uddin
  • Sebastian Wilhelm

Software Requirements Specification: EAsyAnon Audit System. Zenodo.

(2024)

Beitrag in Sammelwerk/Tagungsband
  • Florian Wahl
  • Sebastian Wilhelm

Sensorik und künstliche Intelligenz in der Pflege.

  • In:
  • W. Swoboda
  • N. Seifert

Berlin, Heidelberg: Springer Berlin Heidelberg pg. 307-324

DOI: 10.1007/978-3-662-67914-2_12

(2024)

Zeitschriftenartikel
  • Norbert Lichtenauer
  • Lukas Schmidbauer
  • Sebastian Wilhelm
  • Florian Wahl

A Scoping Review on Analysis of the Barriers and Support Factors of Open Data.

In: Information (vol. 15) , pg. 5

(2024)

DOI: 10.3390/info15010005

ackground: Using personal data as Open Data is a pervasive topic globally, spanning various sectors and disciplines. Recent technological advancements, particularly in artificial intelligence and algorithm-driven analysis, have significantly expanded the capacity for the automated analysis of vast datasets. There’s an expectation that Open Data analysis can drive innovation, enhance services, and streamline administrative processes. However, this necessitates a legally and ethically sound framework alongside intelligent technical tools to comprehensively analyze data for societal benefit. Methodology: A systematic review across seven databases (MEDLINE, CINAHL, BASE, LIVIVO, Web of Science, IEEExplore, and ACM) was conducted to assess the current research on barriers, support factors, and options for the anonymized processing of personal data as Open Data. Additionally, a supplementary search was performed in Google Scholar. A total of 𝑛=1192 studies were identified, and 𝑛=55 met the inclusion criteria through a multi-stage selection process for further analysis. Results: Fourteen potential supporting factors (𝑛=14) and thirteen barriers (𝑛=13) to the provision and anonymization of personal data were identified. These encompassed technical prerequisites as well as institutional, personnel, ethical, and legal considerations. These findings offer insights into existing obstacles and supportive structures within Open Data processes for effective implementation.
Bericht/Report
  • Jakob Folz
  • Manjitha Vidanalage
  • J. Guggumos
  • Sebastian Wilhelm

Software Requirements Specification: EAsyAnon Trust Service. Zenodo.

(2024)

Zeitschriftenartikel
  • Sebastian Wilhelm
  • Florian Wahl

Emergency Detection in Smart Homes Using Inactivity Score for Handling Uncertain Sensor Data.

In: Sensors (vol. 24)

(2024)

DOI: 10.3390/s24206583

In an aging society, the need for efficient emergency detection systems in smart homes is becoming increasingly important. For elderly people living alone, technical solutions for detecting emergencies are essential to receiving help quickly when needed. Numerous solutions already exist based on wearable or ambient sensors. However, existing methods for emergency detection typically assume that sensor data are error-free and contain no false positives, which cannot always be guaranteed in practice. Therefore, we present a novel method for detecting emergencies in private households that detects unusually long inactivity periods and can process erroneous or uncertain activity information. We introduce the Inactivity Score, which provides a probabilistic weighting of inactivity periods based on the reliability of sensor measurements. By analyzing historical Inactivity Scores, anomalies that potentially represent an emergency can be identified. The proposed method is compared with four related approaches on seven different datasets. Our method surpasses existing approaches when considering the number of false positives and the mean time to detect emergencies. It achieves an average detection time of approximately 05:23:28 h with only 0.09 false alarms per day under noise-free conditions. Moreover, unlike related approaches, the proposed method remains effective with noisy data.
Zeitschriftenartikel
  • E. März
  • J. Guggumos
  • Sebastian Wilhelm

Wie viel Open Data kann es geben?.

In: Datenschutz und Datensicherheit - DuD (vol. 48) , pg. 378-382

(2024)

DOI: 10.1007/s11623-024-1925-y

In Zeiten wachsender Datenmengen und eines zunehmenden Interesses an Open Data steht die Frage im Raum: “Wie viel Offenheit ist möglich?” Zentrale Zielsetzung jeder Veröffentlichung von Daten als Open Data ist deren Anonymität. Nur dann liegen die Daten außerhalb des Geltungsbereichs der Datenschutz-Grundverordnung. Die steigende Verfügbarkeit von personenbezogenen Zusatzinformationen aus öffentlichen Quellen wie sozialen Medien erschweren allerdings die Anonymisierung, weil mit zunehmender Datenmenge auch die Möglichkeiten einer Verknüpfung von Daten (Data Linkage) zunehmen und damit auch das Risiko einer möglichen Re-Identifizierung steigt. Die Veröffentlichung von anonymisierten Daten erfordert daher aufgrund des unumkehrbaren Charakters eine umfassende Analyse der Re-Identifizierungsrisiken.
Bericht/Report
  • Jakob Folz
  • Robert Aufschläger
  • Manjitha Vidanalage
  • E. März
  • J. Guggumos
  • Md Moin Uddin
  • Sebastian Wilhelm

Software Requirements Specification: EAsyAnon Recommender System. Zenodo.

(2024)

Zeitschriftenartikel
  • Domenic Sommer
  • Sebastian Wilhelm
  • Florian Wahl

Nurses’ Workplace Perceptions in Southern Germany—Job Satisfaction and Self-Intended Retention towards Nursing.

In: Healthcare (vol. 12) , pg. 172

(2024)

DOI: 10.3390/healthcare12020172

Our cross-sectional study, conducted from October 2022 to January 2023, aims to assess post-COVID job satisfaction, crucial work dimensions, and self-reported factors influencing nursing retention. Using an online survey, we surveyed 2572 nurses in different working fields in Bavaria, Germany. We employed a quantitative analysis, including a multivariable regression, to assess key influence factors on nursing retention. In addition, we evaluated open-ended questions via a template analysis to use in a joint display. In the status quo, 43.2% of nurses were not committed to staying in the profession over the next 12 months. A total of 66.7% of our surveyed nurses were found to be dissatisfied with the (i) time for direct patient care. Sources of dissatisfaction above 50% include (ii) service organization, (iii) documentation, (iv) codetermination, and (v) payment. The qualitative data underline necessary improvements in these areas. Regarding retention factors, we identified that nurses with (i) older age, (ii) living alone, (iii) not working in elder care, (iv) satisfactory working hours, (v) satisfactory career choice, (vi) career opportunities, (vii) satisfactory payment, and (viii) adequate working and rest times are more likely to remain in the profession. Conversely, dissatisfaction in (ix) supporting people makes nurses more likely to leave their profession and show emotional constraints. We uncovered a dichotomy where nurses have strong empathy for their profession but yearn for improvements due to unmet expectations. Policy implications should include measures for younger nurses and those in elderly care. Nevertheless, there is a need for further research, because our research is limited by potential bias from convenience sampling, and digitalization will soon show up as a potential solution to improve, e.g., documentation and enhanced time for direct patient time.
Vortrag
  • Norbert Lichtenauer
  • Sebastian Wilhelm
  • Lukas Schmidbauer
  • Florian Wahl

EAsyAnon - Empfehlungs- und Auditsystem zur Anonymisierung. Poster: "Analysis of barriers and support factors of open data" [unveröffentlicht].

Lübeck 16.-17.04.2024.

(2024)

Vortrag
  • Sebastian Wilhelm

Anonymizing Data for Open Data Repositories. Expert training (VIII).

  • Technische Hochschule Deggendorf.

Deggendorf 05.11.2024.

(2024)