"This site requires JavaScript to work correctly"

Prof. Dr.-Ing. Günther Benstetter

  • Mikroelektronik und Mikrosystemtechnik
  • Elektronische Bauelemente
  • Materialwissenschaften und angewandte Festkörperphysik
  • Qualitätssicherung und Zuverlässigkeitsanalytik

Studiendekan

Studiendekan


Sprechzeiten

nach Vereinbarung


Sortierung:
Zeitschriftenartikel

  • X. Li
  • H. Fan
  • W. Liu
  • Y. Cui
  • C. Niu
  • W. Ni
  • Y. Zhang
  • S. Dai
  • Günther Benstetter
  • G. Lei
  • D. Liu

The heat flux and temperature distribution of W fuzz layers under fusion-relevant He/D ion irradiations

In: Journal of Nuclear Materials vol. 557 pg. 153319.

  • (2021)

DOI: 10.1016/j.jnucmat.2021.153319

The thermal diffusion of nanostructured W fuzz layers formed over W divertor targets due to fusion-relevant He+ irradiations remain unclear so far. By analyzing the collision process of energetic He+ and D+ ions in the fuzz layers, we have calculated the temperature distribution and heat flux of fuzz layers under low-energy (10–200 eV) and high-flux (1022–1025/m2⋅s) He+/D+ irradiations. Both the heat flux of fuzz layers and the temperature difference () between the top and bottom of fuzz layers are determined by the radius of W nanofibers, the thickness of fuzz layers, and the heat load over W targets. Our simulation predicts that under fusion-relevant He+/D+ irradiations at the energy of < 100 eV and the flux of < 1.0 × 1024/m2⋅s, is lower than 35 K when the heat load over the divertor varies in the range of < 10 MW/m2. Under the fusion-relevant He+/D+ irradiations, the heat flux of nanostructured fuzz layers is about 13–19% of the extremely high heat load over the W targets, indicating that the fuzz layers over W divertor targets can be very important for decreasing the extremely high heat load, such as type – I edge localized modes in the fusion device.
  • Elektrotechnik und Medientechnik
  • IQMA
  • NACHHALTIG
Zeitschriftenartikel

  • C. Niu
  • Y. Zhang
  • Y. Cui
  • X. Li
  • W. Liu
  • W. Ni
  • H. Fan
  • N. Lu
  • Günther Benstetter
  • G. Lei
  • D. Liu

Effect of temperature on the growth and surface bursting of He nano-bubbles in W under fusion-relevant He ion irradiations

In: Fusion Engineering and Design vol. 163 pg. 112159.

  • (2021)

DOI: 10.1016/j.fusengdes.2020.112159

Under fusion-relevant He+ irradiations, the W surface temperature is one of the most important parameters for controlling the fuzz growth over the W divertor targets, which is associated with the surface bursting of He nano-bubbles. Using He reaction rate model in W, we investigate the effect of temperature on the growth and surface bursting of He nano-bubbles under low-energy (100 eV) and large-flux (∼1022/m2⋅s) He+ irradiations. Increasing the irradiation temperature from 750 to 2500 K leads to a significant change in both the radius of He nano-bubbles and He retention. At an elevated temperature, He solute atoms prefer to rapidly diffuse into He nano-bubbles, thus affecting their concentration, growth and surface bursting. The decrease in He retention is attributed to an increase in the hop rate of solute He atoms in the W top layer, resulting in the significant He release from the W surface. The radius and density of He nano-bubbles calculated by our model are consistent with our experimental observation.
  • Elektrotechnik und Medientechnik
  • NACHHALTIG
Vortrag

  • Fabian Kühnel
  • Christoph Metzke
  • Günther Benstetter

Thermal conductivity measurements of thin films using 3ω method

In: 7. Tag der Forschung

Deggendorf

  • 23.07.2020 (2020)
  • IQMA
  • Elektrotechnik und Medientechnik
  • NACHHALTIG
Vortrag

  • Günther Benstetter
  • R. Biberger
  • Alexander Hofer
  • H. Göbel

Intermittent-Contact Scanning Capacitance Analysis of Thin Dielectric Films and Semiconductor Devices . Invited Talk

In: 5th International Conference on Technological Advances of Thin Films & Surface Coatings

Harbin, China

  • Juli 2010 (2010)
  • Elektrotechnik und Medientechnik
  • IQMA
Vortrag

  • Günther Benstetter

Failure Analysis of Deep Sub-Micron Semiconductor Structures

Dalian University of Technology, Key-Labs Dalian, China

  • 17.11.2003 (2003)
  • Elektrotechnik und Medientechnik
  • IQMA

Projekte

mehrere Projekte in den Bereichen Oberflächenanalytik, thermische und elektrische Charakterisierung neuer Materialien, >20 abgeschlossene Projekte


Labore

Elektronische Bauelemente, Raster-Sonden-Mikroskopie (RSM), Raster-Elektronen-Mikroskopie (REM) und Halbleiteranalytik


Kernkompetenzen

Material- und Oberflächenanalytik

* Raster-Elektronen-Mikroskopie & begleitende Methoden

Röntgenanalytik (EDX, WDX), Gefüge- und Strukturanalytik (EBSD), Mikro-Röntgenfluoreszenz (μ-XRF) Raster-Transmissions-Elektonenmikroskopie (STEM), korrelative Mikroskopie

* Raster-Sonden-Mikroskopie & Laser-Scanning Mikroskopie

kombinierte mechanische, magnetische, elektrische, thermische und chemische Mikro-Charakterisierung

* Thermische Charakterisierung

Qualitätssicherung und Zuverlässigkeitsanalytik

Fehler- und Ausfallanalytik, Wafer-Level-Zuverlässigkeitsanalytik, HL-Lebensdauer-Untersuchungen


Vita

Akademischer Werdegang

Berufung: Professor, Technische Hochschule Deggendorf, 1998 Promotion: Dr.-Ing., TU München, 1994 Studienabschluss: Dipl.-Ing. Elektrotechnik, 1989

Beruflicher Werdegang

1989-1994: Wissenschaftlicher Assistent, TU München 1994-1998: Siemens HL, IBM/Siemens/Toshiba DRAM – Projekt in Burlington, Vermont, USA seit 1998: Professor an der Technischen Hochschule Deggendorf, Fakultät Elektrotechnik und Medientechnik, Leiter des Insituts für für Qualitäts- und Materialanalysen (IQMA)


Sonstiges

Gutachter für internationale Forschungseinrichtungen und wissenschaftliche Zeitschriften